. PV-WAVE Advantage™
B (-— PV-WAVE Command Language™

User’s Guide

Visual Numerics™

IMSL and Precision Visuals are now one.

Version 4.2 eeee.
2862Version

4.2

2861

June 1993Ver-
sion 4.2

Visual Numerics, Inc.

Corporate Headquarters Boulder, Colorado France

Suite 400, 9990 Richmond Avenue 6230 Lookout Road 33-1-42-94-19-65
Houston, Texas 77042 Boulder, Colorado 80301 FAX: 33-1-42-94-94-22
United States of America United States of America 33-1-34-51-26-26
713/784-3131 303/530-9000 FAX: 33-1-34-51-97-69
FAX: 713/781-9260 FAX: 303/530-9329

Germany Japan United Kingdom
49-211-367-7122 81-3-5689-7550 44-0753-790-600

FAX: 49-211-367-7100 FAX: 81-3-5689-7553 FAX: 44-0753-790-601

Copyright ©1993 by Visual Numerics, Inc.
The information contained in this document is subject to change without notice.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Visual Numerics,
Inc., shall not be liable for errors contained herein or for incidental, consequential, or other
indirect damages in connection with the furnishing, performance, or use of this material.

All rights are reserved. No part of this document may be photocopied or reproduced with-
he prior wii { Visual Numerics, |

Restricted Rights Legend

Use, duplication or disclosure by the US Government is subject to restrictions as set forth
in FAR 52.227-19, subparagraph (c)(l)(ii) of DOD FAR SUPP 252.227-7013, or the equiv-
alent government clause for other agencies.

Restricted Rights Notice: The version of PV-WAVE described in this document is sold
under a per-machine license agreement. Its use, duplication, and disclosure are subject to
the restrictions in the license agreement.

Contents Summary

Preface xv

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:

Chapter 9:

Overview 1

Getting Started 11

Displaying 2D Data 55

Displaying 3D Data 93

Displaying Images 135

Advanced Rendering Techniques 175
Working with Date/Time Data 221
Creating and Querying Tables 263

Software Fonts 291

Chapter 10: Using Color in Graphics Windows 305

Appendix A: Output Devices and
Window Systems A-1

Appendix B: Picture Index B-1

Multivolume Index i

PV-WAVE User’s Guide for Advantage and CL

Table of Contents

Preface xv
Contents of this User’s Guide xv
Typographical Conventions xviii

Customer Support xix

Chapter 1: Overview 1

High-Level PV-WAVE Features 1
Graphics Routines 2
Image Processing 4
Handling Date/Time Data 5
Manipulating Tables of Data 7
Advanced Rendering 7
Data Manipulation Functions 8
Mathematical Functions 8
Producing Final Output 9

Your Next Step 10

Chapter 2: Getting Started 11

Starting PV-WAVE 12
Starting PV=WAVE Interactively 12
Executing a Command File at Startup 13

Stopping PV-WAVE 13
Exiting PV=WAVE 13
Suspending PV=WAVE 14
Interrupting the Current PV=WAVE Command 15
Aborting PV=WAVE 15

Table of Contents iii

Using the Online Documentation System 16
Getting Information about the Current Session 16

Running PV-WAVE 17

Entering Commands at the Command Line 17
Using a Text Editor to Create and Run Programs 19
Creating and Running Programs Interactively 25
Using Executive Commands 26

Using Command Recall 32

Using Line Editing Keys 33

Special Characters 33

Journaling 36
Programmatically Controlling the Journal File 37
JOURNAL Procedure — Sample Usage 38

Saving and Restoring Sessions 39

Using the SAVE Procedure 40
Using the RESTORE Procedure 40

Using PV-WAVE in Runtime Mode 41
Starting PV-WAVE in Runtime Mode 42
The Search Path for Compiled Routine Files 43
Developing Runtime Applications 43

Modifying Your PV=WAVE Environment 44

WAVE_DEVICE: Defining Your Terminal or Window System 44
WAVE_DIR: Ensuring Access to Required Files 45

WAVE_PATH: Setting Up a Search Path 46

WAVE_STARTUP: Using a Startup Command File 48
WAVE_FEATURE_TYPE: Setting the Default Operating Mode 50
WAVE_RT_STARTUP: Using a Startup Procedure in Runtime Mode 51
WAVE_GUI: Selecting the GUI on Sun Workstations 51

Changing the PV=WAVE Prompt 52

Defining Keyboard Shortcuts 52

Using PV=WAVE with X Windows 53

iv

PV-WAVE User’s Guide for Advantage and CL

Chapter 3: Displaying 2D Data 55
Summary of 2D Plotting and General Graphics Routines 56

Customizing Plots with Keyword Parameters 57

Keyword Correspondence with System Variables 57
Example of Changing the Default Color Index 57

Three Graphics Coordinate Systems 59

Data Coordinate System 59
Device Coordinate System 59
Normal Coordinate System 60
Coordinate System Conversion 60

Drawing X Versus Y Plots 61
Producing a Basic XY Plot 62
Scaling the Plot Axes and Adding Titles 63
Specifying the Range of the Axes 65
Plotting Additional Data on the Same Axes 66
Plotting Date/Time Axes 68
Annotating Plots 68
Plotting in Histogram Mode 70
Using Different Marker Symbols 72
Defining Your Own Marker Symbols 73
Using Color and Pattern to Highlight Plots 74
Drawing Bar Charts 76
Controlling Tick Marks 78
Drawing Multiple Plots on a Page 83
Plotting with Logarithmic Scaling 84
Specifying the Location of the Plot 85
Drawing Additional Axes on Plots 87
Drawing Polar Plots 89

Getting Input from the Cursor 90

Table of Contents V

Chapter 4: Displaying 3D Data 93

Drawing Contour Plots 94
Alternative Contouring Algorithms 95
Controlling Contour Features with Keywords 96
Contouring Example 96
Overlaying Images and Contour Plots 100
Labeling Contours 105
Smoothing Contours 108
Filling Contours with Color 109

Drawing a Surface 112
Controlling Surface Features with Keywords 113

Drawing Three-dimensional Graphics 115
Overview of Homogeneous Coordinates 115
PV-WAVE Uses a Right-handed Coordinate System 116
Overview of Transformation Matrices 116
Translating Data 117
Scaling Data 117
Rotating Data 117
Using the T3D Procedure to Transform Data 118
An Example of Transformations Created by SURFACE 119
Converting from 3D to 2D Coordinates 119
Establishing Your Own 3D Coordinate System 121

3D Transformations with 2D Procedures 124
Combining CONTOUR and SURFACE Procedures 125
Even More Complicated Transformations are Possible 126
Combining Images with 3D Graphics 129

Drawing Shaded Surfaces 131
Alternative Shading Methods 131
Setting the Shading Parameters 132
Sample Shaded Surfaces 133

PV-WAVE User’s Guide for Advantage and CL

Chapter 5: Displaying Images 135

What is an Image? 135
Working with Images 135

Image Display Routines: TV and TVSCL 136
Image Orientation on the Display Screen 138
Image Position on the Display Screen 138
Image Size 139

Image Magnification and Reduction 140

Use REBIN for Integral Multiples (or Factors) of Images 141
Use CONGRID for Arbitrary Multiples (or Factors) of Images 141

Retrieving Information from Images 142
Reading Images from the Display Device 142
Not All Devices can Read from the Display 143
Using the Cursor with Images: TVCRS 143

Using Color with Images 144
Color Systems 144
Using Color Tables to View Images 144
Not all Color Images are True-color Images 146
Displaying Images on Monochrome Devices 148
Displaying Images on 24-bit Devices 149

Gray Level Transformations 152
Thresholding, the Simplest Gray-level Transformation 152
Contrast Enhancement 153
Histogram Equalization 155

Image Smoothing 158

The SMOOTH Function 158
Median Smoothing with the MEDIAN Function 159

Table of Contents Vii

Image Sharpening 160
The ROBERTS Function 160
The SOBEL Function 161
Unsharp Masking Method 161
The CONVOL Function 161

Frequency Domain Techniques 162

Filtering Images 163
Displaying the Fourier Spectrum 165

Geometric Transformations 167
Rotating and Transposing with the ROTATE Function 168
Geometric Transformations with the POLY_2D Function 168
Efficiency and Accuracy of Interpolation 170
Correcting Linear Distortion with Control Points 170

Mathematical Morphology 173

Chapter 6: Advanced Rendering Techniques 175

Demonstration Programs 176
Demonstration Programs in the Examples Directory 177
Ray Tracing Demonstration (Render Directory) 177
SLICE_VOL Function and VIEWER Procedure Demonstrations 179
Tables of Demonstration Programs 179

The Basic Rendering Process 185

Importing and Generating Data for Rendering 185

Importing Data 187
Generating Polygons and Volumes 187

Manipulating and Converting Data 191
2-, 3-, and 4-dimensional Gridding 191
Polygon Manipulation 192
Volume Manipulation 192
Coordinate Conversion 193

viii PV-WAVE User's Guide for Advantage and CL

Setting Up Data for Viewing 194

Rendering with Standard Techniques 195

Polygon Rendering 195
Volume Rendering 195

Ray-tracing Rendering 196
Specifying RENDER Objects 196
Lighting Model 197
Defining Color and Shading 198
Defining Object Material Properties 200
Setting Object and View Transformations 201
Invoking RENDER 203
RENDER Examples 203

Displaying Rendered Images 219

Chapter 7: Working with Date/Time Data 221
Introduction to Date/Time Data 221

The PV-WAVE Date/Time Structure 225

The Julian Field 225
The Recalc Field 226
Creating Empty PV=WAVE Date/Time Variables 227

Reading in Your Date/Time Data 228

Converting Your Data into Date/Time Data 229
The STR_TO_DT Function 229
The VAR_TO_DT Function 232
The SEC_TO_DT Function 233
The JUL_TO_DT Function 233

Generating PV-WAVE Date/Time Data 234

Manipulating Date/Time Data 236

Adding to a PV=WAVE Date/Time Variable 237
Subtracting From a PV=WAVE Date/Time Variable 238

Table of Contents iX

Finding Elapsed Time Between Two Date/Time Variables 238
Excluding Days From PV=-WAVE Date/Time Variables 239

Creating Plots With PV-WAVE Date/Time Data 243

Writing PV=-WAVE Date/Time Data To a File 255

Using DC_WRITE Functions 255
Using Conversion Routines 256

Miscellaneous PV-WAVE Date/Time Utility Functions 258
The TODAY Function 259
The DAY_NAME Function 259
The DAY_OF_WEEK Function 260
The MONTH_NAME Function 260
The DAY_OF_YEAR Function 261
The DT_PRINT Procedure 261

Chapter 8: Creating and Querying Tables 263
What are the Table Functions? 263
Table Functions and Structured Query Language (SQL) 264
A Quick Overview of the Table Functions 264

Creating a Table 266
Example 1: Building a Table 267
Example 2: Building a Different Table with the Same Data 269
Example 3: Renaming Columns 270

Querying a Table 270
Restoring a Sample Table 271
The QUERY_TABLE Function 271
Rearranging a Table 271
Summarizing Data with Group By 273
Sorting Data with Order By 276
Subsetting a Table with the Where Clause 277
Passing Variable Parameters into Table Functions 279

PV-WAVE User’s Guide for Advantage and CL

Using the In Operator 280
Combining Multiple Clauses in a Query 280

Using Date/Time Data in Tables 281

Read the Date Data into a Date/Time Variable 281
Two Methods of Handling Date/Time Data in Tables 282

Formatting and Printing Tables 284
Printing the Table without Column Titles 284
Printing the Table with Column Titles 285

Plotting Table Data 286

Tables and Structures 287

Returning Indices of a Subsetted Table 288

Other Methods of Subsetting and Sorting Variables 290

Chapter 9: Software Fonts 291

Software vs. Hardware Fonts: How to Choose 291

Appearance of Text 291
3D Transformations 292
Portability of Text 292
Speed of Plotting 293
Variety 293

Using Software Fonts 293
Software Font Formatting Commands 293
Changing Software Fonts 295
Formatting Commands and Hardware Fonts 297

Text Formatting Examples 297
Example 1: Basic Text Formatting 297
Example 2: Changing the Position of Text 298
Example 3: Multiple Fonts within a Single String 299
Example 4: Annotating a Plot 302

Table of Contents Xi

Chapter 10: Using Color in Graphics Windows 305

Understanding Color Systems 305
Color System Overview 306
The RGB Color System 306
The HSV and HLS Color Systems 308

Using Color to Enhance Visual Data Analysis 310

Experimenting with Different Color Tables 310
Modifying the Color Tables 314
Controlling PV=WAVE's Plot Colors 321

Device-specific Methods for Using Color 327

Color Tables — Switching Between Devices 327
Combining Colors to Create Special Effects 328

Summary of Color Table Procedures 329

Basic Color Table Procedures 329
Interactive Color Table Procedures 330

Appendix A: Output Devices and Window Systems A-1

Producing Hardcopy Output A-3
Selecting the Output Device with SET_PLOT A-3
Configuring the Output Device with DEVICE A-4
Entering Graphics Commands for Output A-4
Closing the Output File A-5
Sending the Output File to the Printer or Plotter A-5

Window System Features A-6
How Is Backing Store Handled? A-7

CGM Output A-9
Controlling CGM Output with DEVICE Keywords A-10
Using the CGM Driver A-11
Using Color with CGM Output A-12
Binary CGM Output for VAX/VMS Machines A-13

Xii PV-WAVE User’s Guide for Advantage and CL

HPGL Output A-13
Supported Features of HPGL A-14
Specifying Linestyles in HPGL Output A-15
Controlling HPGL Output with DEVICE Keywords A-16

LJ-250 Output A-20

Controlling LJ-250 Output with DEVICE Keywords A-21
LJ-250 Image Background Color A-23

PCL Output A-23
Controlling PCL Output with DEVICE Keywords A-24
PCL Image Background Color A-27

PICT Output A-27
Controlling PICT Output with DEVICE Keywords A-28

PostScript Output A-31
Controlling PostScript Output with DEVICE Keywords A-32
Using PostScript Fonts A-37
Using Color PostScript Devices A-39
PostScript Supports Color Images A-39
Changing the Image Background Color A-40
Creating Publication-quality Documents A-40
The LATEX Insertplot Macro A-43
Inserting PV=WAVE Plots into Microsoft Word Documents A-45
Inserting PV-WAVE Plots into Ventura Publisher Documents A-47

QMS QUIC Output A-48
Supported Features of QMS QUIC A-50
Specifying Linestyles in QMS QUIC Output A-50
Printing QMS Graphics Output Files A-50
Controlling QMS QUIC Output with DEVICE Keywords A-51

Regis Output A-54
Controlling Regis Output with DEVICE Keywords A-55
Limitations of REGIS Output A-56

Table of Contents Xiii

SIXEL Output A-58
Controlling SIXEL Output with DEVICE Keywords A-59
SIXEL Device Considerations A-61
SIXEL Image Background Color A-61

Tektronix 4510 Rasterizer A-61
Supported Features of the 4510 Driver A-62
Controlling Tektronix 4510 Output with DEVICE Keywords A-63
Usage Warnings A-64

Tektronix Terminals A-65

Controlling Tektronix Output with DEVICE Keywords A-66
Limitations of Tektronix and Tektronix-compatible Terminals A-68

X Window System A-69

Controlling Where PV=WAVE Graphics are Displayed A-69

Graphical User Interfaces (GUIs) for PV=WAVE Applications Running Un-
der X A-70

Controlling the X Driver with DEVICE Keywords A-71

X Window Visuals A-77

Colormapped Graphics A-78

How PV=WAVE Allocates the Colormap A-80

Using Pixmaps to Improve Application Performance A-85

24-bit Visual Classes Supported by PV=-WAVE A-88

Understanding 24-bit Graphics Displays A-90

Using the Write Mask and Graphics Functions to Manipulate Color A-93

X Window IDs A-97

Z-buffer Output A-99
Controlling Z-buffer Output with DEVICE Keywords A-99
Z-buffer Examples A-101

Appendix B: Picture Index B-1

Multivolume Index i

Xiv PV-WAVE User’s Guide for Advantage and CL

Preface

This user’s guide is part of a larger set of documentation; the entire
set is shown in Figure 1. Start with the PV=WAVE Tutorial, and
then refer to this user’s guide for other fundamental information
about how to use the numerous features of PV=WAVE Command
Language. Advanced users will also want to refer to the
PV=WAVE Programmer’s Guide for Advantage and CL and the
PV=-WAVE Reference for Advantage and CL, Volumes I and II for
detailed information.

For your convenience, all the documents shown in Figure I are
available online, as well as being available in a hardcopy format.
Additional copies of the hardcopy documentation can also be
ordered from Visual Numerics, Inc., by calling 800/447-7147.

Contents of this User’s Guide

This user’s guide contains the following chapters:

* Preface — Describes the contents of this guide, lists the
typographical conventions used, explains how to use the
PV=WAVE documentation set, and explains how to obtain
customer support.

xXv

PV-WAVE “Core” Documentation

Q

=/

S

(L)
— w
® = »o
£3 | |&3
TR E 2
,g.n: L]
2| (€9
:‘E o -
Wwa w S
>3 > >
> < B
=3 =3
° e
ag |1z &

PV-WAVE Reference Volume I
(for Advantage and CL)

PV-WAVE Reference Volume |
(for Advantage and CL)

Multi-Volume Index

E PV-WAVE Advantage Reference

Learning Aids

PV-WAVE Tutorial

Optional Modules

PV-WAVE:Maple
User’s Guide

PV-WAVE:Database Con-
nection User’s Guide
PV-WAVE:GTGRID
User’s Guide

Figure | PV=WAVE documentation set; for more information about any
one book you see shown here, refer to its preface, where the contents
of each chapter are explained briefly. All documents are available both
online and in a hardcopy format. Additional copies of the hardcopy docu-
mentation can be ordered by calling Visual Numerics, Inc., at 303/447-
7147.

PV=WAVE User’s Guide for Advantage and CL

* Chapter 1: Overview — Provides an overview of the topics
discussed in this manual.

* Chapter 2: Getting Started — Discusses some of
PV=-WAVE’s basic operations, such as starting and stopping
the software, using the online documentation system, running
the software, special characters, journaling, saving and restor-
ing sessions, and modifying your environment.

* Chapter 3: Displaying 2D Data — Covers the basics of X
versus Y plotting.

* Chapter 4: Displaying 3D Data — Describes the basics of
contour and surface plotting.

* Chapter 5: Displaying Images — Describes routines used for
displaying images and image processing.

* Chapter 6: Guide to Advanced Rendering — Describes the
routines used to render volumes using ray tracing techniques.

e Chapter 7: Working with Date/Time Data — Explains how
to create plots with a Date/Time axis.

* Chapter 8: Creating and Querying Tables — Discusses how
to create and subset tables of data using SQL-like functions.

* Chapter 9: Software Fonts — Discusses how to use and
format PV=WAVE'’s software, or vector-drawn, fonts. This
chapter also discusses the difference between software and
hardware fonts and how to choose between them.

e Chapter 10: Using Color in Graphics Windows —
Discusses color systems and introduces the routines that
control color tables and plot colors.

* Appendix A: Output Devices and Window Systems —
Explains how to use the standard graphic output devices and
window systems supported by PV=WAVE.

* Appendix B: Picture Index — A graphical index of the
illustrations that appear in the PV=WAVE documentation set.

* Index — A multivolume index that includes references to the
PV=WAVE User's Guide, PV=WAVE Programmer’s Guide, as
well as both volumes of the Reference.

Contents of this User’s Guide Xvii

Typographical Conventions

The following typographical conventions are used in this guide:

PV=WAVE code examples appear in this typeface.
For example:

PLOT, temp, s02, Title='Air Quality'

Code comments are shown in this typeface, below the com-
mands they describe. For example:

PLOT, temp, s02, Title='Air Quality'
This command plots air temperature data vs. sulphur dioxide
concentration.

Comments are used often in this reference to explain code
fragments and examples. Note that in actual PV=WAVE code,
all comment lines must be preceded by a semicolon (;).

PV=-WAVE commands are not case sensitive. In this reference,
variables are shown in lowercase italics (myvar), function and
procedure names are shown in uppercase (XYOUTS), key-
words are shown in mixed case italic (X7itle), and system
variables are shown in regular mixed case type (! Version). For
better readability, all widget routines are shown in mixed case
(WwMainMenu).

A §$ at the end of a PV=WAVE line indicates that the current
statement is continued on the following line. By convention,
use of the continuation character ($) in this document reflects
its syntactically correct use in PV=WAVE. This means, for
instance, that strings are never split onto two lines without the
addition of the string concatenation operator (+). For example,
the following lines would produce an error if entered literally
in PV=WAVE:

WAVE> PLOT, x, y, Title = 'Average $
Air Temperatures by Two-Hour Periods'

Note that the string is split onto two lines; an error message
is displayed if you enter a string this way.

The correct way to enter these lines is:

XViii

PV-WAVE User'’s Guide for Advantage and CL

WAVE> PLOT, X, y , Title ='Average '+§
'Air Temperatures by Two-Hour Periods'
This is the correct way to split a string onto two command
lines.
The | symbol means “or” when used in a usage line. It is not to
be typed. For example, in the following command:

result = QUERY_TABLE(table,
' [Distinct] * | col; [alias] [, ..., col, [alias]] ...

the | means use either * or col; [alias] |, ..., col, [alias]], but
not both.

Reserved words, such as FOR, IF, CASE, are always shown in
uppercase.

Customer Support

If you have problems unlocking your software or running the
license manager, you can talk to a Visual Numerics Customer Sup-
port Engineer. The Customer Support group researches and
answers your questions about all Visual Numerics products.

Please be prepared to provide Customer Support with the follow-
ing information when you call:

The name and version number of the product. For example,
PV=-WAVE 4.2 or PV-WAVE P&C 2.0.

Your license number, or reference number if you are an
Evaluation site.

The type of system on which the software is being run. For
example, Sun-4, IBM RS/6000, HP 9000 Series 700.

The operating system and version number. For example,
SunOS 4.1.3.

A detailed description of the problem.

The phone number for the Customer Support group is 303/530-
5200.

Customer Support

Xix

Trademark Information
PostScript is a registered trademark of Adobe Systems, Inc.
QMS QUIC is a registered trademark of QMS, Inc.

HP Graphics Language, HP Printer Control Language, and HP
LaserJet are trademarks of Hewlett-Packard Corporation.

Macintosh and PICT are registered trademarks of Apple Com-
puter, Inc.

Open Windows and Sun Workstation are trademarks of Sun
Microsystems, Inc.

TEKTRONIX 4510 Rasterizer is a registered trademark of
Tektronix, Inc.

OPEN LOOK and UNIX are trademarks of UNIX System Labo-
ratories, Inc.

PV=-WAVE, PV-WAVE Command Language, PV=WAVE Advan-
tage, and PV=WAVE P&C are trademarks of Visual Numerics,
Inc.

OSF/Motif and Motif are trademarks of the Open Software Foun-
dation, Inc.

X Window System is a trademark of the Massachusetts Institute of
Technology

XX

PV=-WAVE User’s Guide for Advantage and CL

Overview

This manual is a user’s guide for PV=WAVE Command Language,
a software system that lets you explore and understand your scien-
tific, engineering, or commercial data visually and quickly.
Integrated graphics, data analysis, image processing, data anima-
tion, tabular manipulation of record-based data, and custom
application development make PV=WAVE a productive Visual
Data Analysis (VDA) environment.

You can enter and execute PV=WAVE commands interactively at
the keyboard, or combine them into powerful applications. As a
high-level, interpretive programming language, PV=WAVE is
ideal for VDA tasks ranging from ad-hoc programming projects to
the development of complete, organization-wide solutions.

High-Level PV-WAVE Features

This section provides a brief discussion of PV=WAVE’s high-level
graphics, data manipulation, and mathematical features. The top-
ics include:

v/ graphics routines

v/ image processing

v/ handling date/time data

v/ manipulating tables of data
v/ advanced rendering

v data manipulation functions
v/ mathematical functions

¢/ producing output

PV=-WAVE Advantage users, see the PV=WAVE Advantage Refer-
ence for detailed information on all of the Advantage functions
and procedures. PV=WAVE Advantage gives you access to all of
the functionality of PV=WAVE Command Language, plus many
more functions for mathematical, statistical, and scientific com-
puting.

Graphics Routines

The next two subsections describe basic and advanced graphics
routines available in PV=WAVE.

Displaying Basic Graphics

PV-WAVE allows data to be displayed in a variety of ways. The
most common ways are listed below. Each method, by itself,

allows you to get a quick look at your data by displaying a simple,
“stripped-down” plot. The procedure provides intelligent defaults
for the axis range and tick mark values. Thus, if you just want to
take a quick look at the data, the basic procedure is all you need.

Regardless of the way you are displaying your data, a clear under-
standing of the principles for creating and modifying 2D plots is
beneficial. Many of the principles, keywords, and system variables
are shared by all of the data display procedures.

The basic plotting types include:

* 2D Line/Scatter Plots — PLOT, OPLOT

* Polar Plots — PLOT with Polar keyword

* Logarithmic Plots — PLOT_IO, PLOT_OI, PLOT_OO

2 PV=WAVE User’s Guide for Advantage and CL

* Contour Plots — CONTOUR
* Wire Mesh Plots — SURFACE

« Calendar Axis Plots — Any plot showing date/time data
along the X axis.

For more information, see Chapter 3, Displaying 2D Data, and
Chapter 4, Displaying 3D Data. Also refer to Chapter 2 Procedure
and Function Reference, in the PV=-WAVE Reference. For informa-
tion on date/time data, see Chapter 7, Working with Date/Time
Data.

Modifying Basic Plots

To finalize your graphics display, you will want to customize it
using keywords. All keywords can be abbreviated and can be
listed in any order. Keywords that are either enabled or disabled
may be written with a forward slash in front of the keyword to set
it equal to 1, which is equivalent to enabling that option. For exam-
ple, /Row and /Column are equivalent to Row=1 and
Column=1. Many keywords have an X, Y, or Z in front of the
name to specify the axis they apply to. Keywords may also corre-
spond to system variables.

All the basic plot types can be modified by using keywords or
additional routines to fit your needs. Some of the more commonly
used modifications include:

* Multiple plots per page.
* Using color, line styles or symbols.
¢ Combining different display techniques.

For a description of the keywords that help you accomplish these
goals, refer to Chapter 3 Graphics and Plotting Keywords, in the
PV=WAVE Reference.

High-Level PV-WAVE Features 3

Creating Advanced Graphics

Along with the basic display techniques, you can opt for more
complex graphics. Following is a list of some of the more common
functions and procedures used to produce special effects:

* Multiple Axes on One Plot — AXIS

* Interactive Graphics — CURSOR, TVCRS, DEFROI, and
PROFILES, WglsoSurfaceTool, and others.

* Shading Surfaces — POLYSHADE, SHADE_SURF
* Animation — MOVIE, WgMovieTool, WgAnimateTool

* Advanced Rendering — RENDER, CONE, CYLNDER,
SPHERE, MESH, VOLUME

Check the Users’ Library for even more functions and procedures.
For more information about libraries, see Chapter 10, Program-
ming with PV-WAVE, in the PV-WAVE Programmer’s Guide. For
more information about data display, see Chapter 4, Displaying
3D Data, and Chapter S, Displaying Images.

Image Processing

If you want to do image processing, you’ll appreciate the many
routines available for displaying images. You can also convert
conventional plots into images or manipulate and enhance images.

Displaying Images

PV-WAVE offers many options for displaying images. You can
simply display the data, or you can easily enhance your image dis-
play with many built-in image display tools. A brief list includes:

* Creating or Modifying Color Tables — ADJCT, C_EDIT,
COLOR_EDIT, LOADCT, PALETTE, WgCeditTool,
WgCBarTool

* Histogram Equalization — HIST_EQUAL_CT,
HIST_EQUAL

* Displaying Images on Screen — TV, WgSimageTool

4 PV=WAVE User’s Guide for Advantage and CL

* Scaling and Displaying Images — TVSCL
* Morphologic Building Blocks — DILATE, ERODE

For more information on displaying and manipulating image data,
see Chapter 5, Displaying Images.

Processing Images

In addition to traditional image processing applications, many
applications (such as the display of time-series data) that usually
have been displayed as XY plots can be easily converted into 2D
arrays that can be used by the image processing routines. An
example of this can be seen in the “Time Series” example in the
PV-WAVE Demonstration Gallery. (You start this demonstration
by typing demo at the WAVE> prompt.)

A partial list of routines that are useful when working with images
and 2D arrays includes:

* Shrinking or Expanding an Image — CONGRID or REBIN
» Histogram Equalization of the Image — HIST_EQUAL
* Convolving Two Vectors or Arrays — CONVOL

s Creating Filters — DIGITAL_FILTER, HANNING,
LEEFILT, MEDIAN

* Warping of Images — POLYWARP
* Edge Enhancement — ROBERTS, SOBEL

For more information, see Chapter S, Displaying Images.
Handling Date/Time Data

Converting Your Data into Date/Time Data

If you are importing date/time data into PV=WAVE, four functions
simplify converting this data into PV=WAVE date/time data.
These functions are:

» STR_TO_DT — Converts string data or variables containing
string data into PV=WAVE date/time variables.

High-Level PV-WAVE Features 5

VAR_TO_DT — Converts numeric variables containing
date/time information into PV=WAVE date/time variables.

SEC_TO_DT — Converts seconds into PV=WAVE date/time
variables.

JUL_TO_DT — Converts the Julian day into a PV=WAVE
date/time variable.

Generating PV-WAVE Date/Time Data

You can generate PV=WAVE date/time data for data files that do
not have date and time stamps. There are two steps:

Q Create an initial PV=-WAVE date/time structure using one of

four conversion functions: STR_TO_DT, VAR_TO_DT,
SEC_TO_DT, or JUL_TO_DT.

U Use the DTGEN function to create a variable that contains an

array of PV=WAVE date/time structures.

Manipulating Date/Time Data

PV=WAVE provides several functions for manipulating
PV-WAVE date/time variables. These functions are:

L]

DT_ADD
DT_SUBTRACT
DT_DURATION
CREATE_WEEKENDS
CREATE_HOLIDAYS
LOAD_HOLIDAYS
LOAD WEEKENDS
DT_COMPRESS

For details on all of the date/time functions, see Chapter 7, Work-
ing with Date/Time Data.

PV=WAVE User’s Guide for Advantage and CL

Manipulating Tables of Data

A table is a natural and easily understood way of organizing data
into columns and rows. Many computer systems use the table
model to organize large amounts of data. For example, a relational
database stores all of its data in a tabular format.

The PV=-WAVE table functions let you create tables and subset
them in various ways. These functions are both powerful and easy
to use. Tables, which you create with the BUILD_TABLE func-
tion, can be subsetted and manipulated with the QUERY_TABLE
function. QUERY_TABLE, which closely resembles the Struc-
tured Query Language (SQL) SELECT command, is an easy to
learn and conceptually natural way to access data in tables.

The PV=WAVE table functions include:

* BUILD_TABLE — Creates a new table from PV=WAVE
numeric or string vectors (1D arrays) of equal length.

* QUERY_TABLE — Lets you subset, rearrange, group, and
sort table data. This function returns a new table containing
the query results.

+ UNIQUE — Removes duplicate elements from any vector
(1D array).

For detailed information on the table functions, see Chapter 8,
Creating and Querying Tables.

Advanced Rendering

You can render 3D geometric and volumetric data using the
advanced rendering capabilities of PV=WAVE. Most of these
functions are part of the standard library. The RENDER function
is a system routine that performs rendering using the ray tracing
technique.

In addition, the standard library contains several utility functions
for gridding (2D, 3D, 4D, and spherical) and for conversion of
rectangular, polar, cylindrical, and spherical coordinates.

High-Level PV-WAVE Features 7

For detailed information on the advanced rendering routines, see
Chapter 6, Advanced Rendering Techniques.

Data Manipulation Functions

PV-WAVE contains a large number of routines that allow you to
search, evaluate, sort, and modify your data. In addition to the
operators described earlier in this chapter, there are basic statisti-
cal routines, array analysis and manipulation routines, plus search
and sort routines. Some of these routines include:

* Basic Statistics — AVG, CORRELATE, SIGMA, STDEV

* Array Information — DETERM, HISTOGRAM, MAX,
MIN, TOTAL

* Array Manipulation — REBIN, REFORM, REVERSE,
ROTATE, SHIFT, SMOOTH, TRANSPOSE

* Search Utility — WHERE
* Sort Utility — SORT

* Table Functions — BUILD_TABLE, QUERY_TABLE, and
UNIQUE

For a complete list of array routines, see Chapter 1 Functional
Summary of Routines, in the PV=-WAVE Reference.

Note PV=WAVE Advantage offers many specialized routines for math-
' emetical, analytical, and scientific computing. PV=WAVE
Advantage users, see the PV=WAVE Advantage Reference for
information on these routines.

Mathematical Functions

There are many mathematical procedures and functions included
in PV=WAVE to assist you in analyzing data. Furthermore, you
may also create your own procedures and functions with
PV=-WAVE.

8 PV=WAVE User’s Guide for Advantage and CL

Here is a partial listing of the more commonly used mathematical
functions:

* Absolute Value — ABS

* Cross Product — CROSSP

¢ Derivatives — DERIV

* Determinant — DETERM

* Eigenvalues and Eigenvectors — TRED2
¢ Fast Fourier Transforms — FFT

* Linear Equation Solvers — LUBKSB, LUDCMP,
MPROVE, SVBKSB, TRIDAG

e Curve-Fitting Algorithms — CURVEFIT, GAUSSFIT,
POLYFIT, POLYFITW

For a listing of mathematical functions, see Chapter 1 Functional
Summary of Routines, in the PV=WAVE Reference.

In addition, PV=WAVE Advantage users have access to a much
more varied and technically sophisticated library of mathematical
routines. See the PV=WAVE Advantage Reference for details.

Not

Producing Final Output

PV=WAVE supports hardcopy output to various plotters and print-
ers. The SET_PLOT and the DEVICE procedures are used to
select output devices and modify output characteristics. For
descriptions of the SET_PLOT and DEVICE procedures, see
Appendix A, Output Devices and Window Systems. This appendix
also contains general information about how to produce hardcopy
output and specific information on producing output for various
devices and window systems.

High-Level PV-WAVE Features 9

Your Next Step

If you have never used PV=WAVE, the PV-WAVE Tutorial offers
additional information on the basics of PV=WAVE and provides
several examples for you to try.

With PV=WAVE, you can apply sophisticated graphics routines to
a wide range of applications. Successful users have already real-
ized how much more productive they can be when they use
PV=-WAVE for analyzing their data. PV=WAVE offers the features
and performance that your analysis situation demands.

10 PV=-WAVE User’s Guide for Advantage and CL

Getting Started

This chapter discusses some of PV=WAVE’s basic operations. If
you are a novice PV=WAVE user, see the previous Overview chap-
ter, and see the PV=WAVE Tutorial for basic concepts, lessons, and
exercises. This chapter contains the following topics:

Starting PV-WAVE on page 12 — Explains how to start
PV-WAVE using the wave command.

Stopping PV-WAVE on page 13 — Describes various methods
for exiting, suspending, interrupting, and aborting PV=WAVE.

Using the Online Documentation System on page 16 —
Explains how to use the online documentation system.

Getting Information about the Current Session on page 16 —
Introduces the INFO procedure, which displays information
about the current PV=WAVE session.

Running PV-WAVE on page 17 — Explains how to run
PV=WAVE interactively and with command files, procedures,
functions, and main programs. The section also explains how
to use executive commands and command recall.

Special Characters on page 33 — Describes various special
characters, such as the exclamation point (!), ampersand (&),
and dollar sign (8).

11

* Journaling on page 36 — Tells you how to save a PV=WAVE

interactive session using the JOURNAL procedure, and
explains the two different uses of this procedure.

* Saving and Restoring Sessions on page 39 — Explains how to

save variables and restore them for use in future sessions. This
section discusses the syntax and keywords for the SAVE pro-
cedure and the RESTORE procedure.

* Using PV-WAVE in Runtime Mode on page 41 — Discusses
how to run applications that have been previously compiled
and saved with the COMPILE procedure.

* Modifying Your PV-WAVE Environment on page 44 — When
you start PV=WAVE, an environment is automatically set up
for you with the wvsetup file. This section describes various
ways to change that environment. This section also explains
how to change your PV=WAVE prompt, define keyboard
accelerators, and use PV=WAVE with X Windows.

Starting PV-WAVE

Before running PV=WAVE, the wvsetup file (UNIX) or
WVSETUP.COM file (VMS) must be executed. When this file,
which is described in detail in your installation guide, has been
executed, you are ready to start PV=-WAVE,

Starting PV-WAVE Interactively

You initiate PV=WAVE from your operating system prompt. At
the operating system prompt, type wave and press <Return>. The
PV=WAVE prompt appears:

WAVE>

This places you in a mode where you can interactively enter
commands at the WAVE> prompt. If you see an error and
PV=WAVE does not start, see your installation guide for trouble-
shooting information.

12

PV=WAVE User’s Guide for Advantage and CL

Executing a Command File at Startup

A command file is a file that contains PV=WAVE commands.
When a command file is executed, each command in the file is
executed. When the end of the file is reached, control reverts to the
interactive mode, that is, the WAVE> prompt is displayed, and you
can type commands from the keyboard. Also you may call the
EXIT procedure from within the command file to exit PV=WAVE
and return to the operating system prompt.

You can execute a command file directly at startup by entering the
following at the operating system prompt:

wave filename

The filename must be a correctly constructed command file. It can-
not be a PV=WAVE procedure file. Command files are explained
in more detail in Running a Command File on page 19.

Note

You can also set the environment variable (or VMS logical)
WAVE_STARTUP to execute a command file when you enter the
command that starts PV=WAVE. See WAVE_STARTUP: Using a
Startup Command File on page 48.

Stopping PV-WAVE

The simplest way to stop PV=WAVE s to type EXIT or QUIT at
the WAVE> prompt. Other more complicated methods of stopping
include aborting, suspending, and interrupting. All these methods
are explained in this section.

Exiting PV-WAVE

When you exit PV=WAVE, you are returned to the operating sys-
tem prompt. Variable assignments are lost, but data that is buffered
for open files is saved to these files before exiting is complete.

Stopping PV-WAVE 13

Exiting on a UNIX System

If you type EXIT or QUIT at the WAVE> prompt, you exit back to
the operating system. Entering a <Control>-D as the first character
on the command line performs the same function. If the
<Control>-D is not the first character on the command line, it sim-
ply ends the input line as if a <Return> had been entered.

Exiting on a VMS System

If you type EXIT or QUIT at the WAVE> prompt, you exit back to
the operating system. Entering a <Control>-Z as the first character
on the command line performs the same function. If the
<Control>-Z is not the first character on the command line, it ends
the input line as if a <Return> had been entered. The input line is
executed, and then PV=-WAVE exits.

Suspending PV-WAVE

When you suspend PV=WAVE, you are returned to the operating
system prompt; however, PV=WAVE is still running as a back-
ground process. All variables and their values are saved.

Suspending PV-WAVE on a UNIX System

<Control>-Z is the normal UNIX suspend character. Temporarily,
it stops a process and places it in the background. Typing the sus-
pend character suspends PV=WAVE and returns you to the shell
process where you can enter one or more commands, for example,
to run a text editor. After completing the commands, type £g to
return PV=WAVE to the foreground.

Suspending PV-WAVE on a VMS System

There is no method for suspending PV=WAVE on VMS systems.

14

PV=WAVE User’s Guide for Advantage and CL

Interrupting the Current PV-WAVE Command

<Control>-C is the interrupt character. Typing the interrupt char-
acter generates a PV=WAVE keyboard interrupt. Under VMS,
<Control>-C is always the interrupt character. However, under
UNIX, the interrupt character can be changed by you outside of
PV=WAVE. This is rarely done, so for the purposes of this manual,
we assume the default convention.

When you type <Control>-C at the WAVE> prompt, the following
message is displayed:
% Interrupt encountered.

When the interpreter regains control, you are returned to the
WAVE> prompt. You can continue after interrupting PV=WAVE
with the .CON command.

Aborting PV-WAVE

When you abort PV=WAVE, a message appears, such as quit
(core dumped) and you are returned to the operating system
prompt. Remove the core file before re-entering PV=WAVE.

Aborting on a UNIX System

As with any UNIX process, PV=WAVE may be aborted by typing
<Control>-\. This is a very abrupt exit — all variables are lost, and
the state of open files will be uncertain. Thus, although it can be
used to get out of PV=WAVE in an emergency, its use should be
avoided.

After aborting PV=WAVE in a UNIX environment, you may find
that your terminal is left in the wrong state. You can restore your
terminal to the correct state by issuing the UNIX command:

% reset
or

% stty echo -cbreak

Stopping PV-WAVE

15

Aborting on a VMS System

As with any VMS program, PV=WAVE may be aborted by typing
<Control>-Y. Aborting PV=WAVE with <Control>-Y should only
be used as an emergency measure since all the variables are lost
and some output may disappear. It is possible to resume
PV=WAVE by typing the DCL command.

$ CONTINUE

However, if any DCL command that causes VMS to run a new
program is issued prior to the CONTINUE command, the
PV-WAVE session is totally and irreversibly lost.

Using the Online Documentation System

To access PV=WAVE'’s online documentation, enter:
HELP

at the PV=WAVE command line. HELP opens the main window
for the online documentation system. To see detailed information
on using the online documentation, click the button About Online
Help in this main window.

You can also run the online documentation system from the UNIX
operating system level, by entering the following commands at the
operating system prompt:

% source S$WAVE_DIR/bin/wvsetup

% wavedoc

Getting Information about the Current Session

The INFO procedure provides information about the PV=WAVE
session in progress.

Calling INFO with no parameters displays an overview of the ses-
sion, including the current definitions of all of your variables. You

16

PV=-WAVE User’s Guide for Advantage and CL

can obtain more specific information about the session by provid-
ing keywords with the INFO command.

For example, INFO, /Device provides information about the
current graphics device being used by PV=WAVE. INFO,
/Memory reports the amount of dynamic memory in use and the
number of times it has been allocated and deallocated. For more
information about the INFO procedure, see Chapter 14, Getting
Session Information, in the PV=WAVE Programmer s Guide.

Running PV-WAVE

The following subsections describe how to use PV=WAVE inter-
actively and with program and command files. When you enter
commands or create and run programs, procedures, and functions
from the WAVE> prompt, you are using PV=WAVE interactively.
You may also use PV=WAVE indirectly, that is, create and run pro-
grams, procedures, and functions that are contained in files. This
section discusses:

* Entering commands at the command line

* Using a text editor to create and run programs
* Creating and running programs interactively

* Using executive commands

* Using command recall

Entering Commands at the Command Line

When the WAVE> prompt is visible, you are located at the
PV=WAVE command line. This is also called the main program.
The command line gives you immediate access to all the data anal-
ysis and graphics display commands and procedures that are part
of PV=WAVE. As you enter commands at the keyboard, they are
compiled and executed immediately. You see the data transforma-
tions and results on your computer screen instantly.

Running PV-WAVE

17

When using the command line, data analysis is quick and simple.
Read in the data and, within seconds, you can begin manipulating
it, discovering what trends and patterns it holds. Here are some
examples of some simple command line entries:

WAVE> x = 7*8
Assigns the value of 7 times 8 to the variable x.

WAVE> PRINT, 'x = ', x
X = 56
Prints the string “x = ” and the value of x which is 56.

WAVE> SET_PLOT, 'PS'

This command tells PV=WAVE to use the PostScript driver to
produce graphics output for a PostScript printer or plotter.

WAVE> .RUN testfile

Compiles and runs the file named testfile. If this file is not found
in the current directory, the directory search path is examined.

WAVE> FOR I = 1,3 DO PRINT, I, I"2
11
2 4
39
You can also enter statements at the prompt. This state-
ment calculates the square of the numbers 1 through 3.

WAVE> INFO, /Device
Available graphics _devices: 4510 CGM HPL
NULL PCL PS QMS REGIS SIXEL TEK X

Current graphics device: PS
File: <none>

Mode: Portrait, Non-Encapsulated, Color
Disabled

Offset (X,Y): (1.905,12.7) cm., (0.75,5) in.
Size (X,Y): (17.78,12.7) cm., (7,5) in.
Scale Factor: 1

Font Size: 12

18

PV=-WAVE User’s Guide for Advantage and CL

Font: Helvetica

bits per image pixel: 4
Displays available graphics output devices, the current graphics
device, and the default values for the current graphics device.

WAVE> PLOT, mydata
Plots a two-dimensional graph of mydata.

Using a Text Editor to Create and Run Programs

You can create program files using a text editor from the operating
system prompt and then execute these programs within
PV=WAVE. This method is usually how programs are created
because these programs can be saved in files for future use. The
types of files you can create include:

v/ command files
v procedures
v/ functions

¢/ main programs

Running a Command File

A command file is simply a file that contains PV=WAVE executive
commands and statements. Command files are useful for execut-
ing commands and procedures that are commonly used. The
commands and statements in the command file are executed as if
they were entered from the keyboard at the WAVE> prompt.

There are three ways that you can run a command file:

* You can enter the command file mode (run a command file) by
entering the following at the WAVE> prompt:

WAVE> @filename

* From the UNIX or VMS prompt, you can enter the filename
in conjunction with the wave command:

wave filename

Running PV-WAVE

19

* Ifyou have created a startup file that has been defined with the
environment variable, WAVE_ STARTUP, then you can enter
the wave command at the UNIX or VMS prompt to run the
command file. See WAVE_STARTUP: Using a Startup Com-
mand File on page 48 for details.

PV=WAVE reads commands from the specified file until the end is
reached. You can nest command files by prefacing the name of the
new command file with the @ character. The current directory and
then all directories in the !Path system variable are searched for

the file. See WAVE_PATH: Setting Up a Search Path on page 46.

A semicolon (;) after the @ character can be interpreted as a VMS
filename in a VMS environment. Surround the semicolon within
blank spaces or tabs to create a comment after the @ sign.

Command file execution may be terminated before the end of the
file with control returning to the interactive mode by calling the
STOP procedure from within the command file. Calling the EXIT
procedure from the command file has the usual effect of terminat-
ing PV=WAVE.

Command File Execution — Sample Usage

An example of a PV=WAVE command line that initiates command
file execution is:

WAVE> @myfile

Use myfile for statement and command input. If not in the current
directory, use the search path !Path.

Possible contents of myfile are shown below:

.RUN PROGA
Run program A.

.RUN PROGB
Run program B.

PRINT, avalue, bvalue
Print results.

CLOSE, 3
Close file on logical unit 3.

20

PV=-WAVE User’s Guide for Advantage and CL

The command file should not contain complete program units such
as procedures or functions. However, complete program units can
be compiled and run by using the .RUN and .RNEW commands in
the command files, as shown in the previous example.

Guidelines for Creating a Command File

Each line of the command file is interpreted exactly as if it was
entered from the WAVE> prompt. In the command file mode,
PV=WAVE compiles and executes each statement before reading
the next statement. This is different than the interpretation of pro-
grams, procedures, and functions compiled using . RNEW or

. RUN, in which all statements in a program are compiled as a sin-
gle unit and then executed. Labels, as described in Statement
Labels on page 52 of the PV=WAVE Programmer s Guide, are not
allowed in the command file mode because each statement is com-
piled independently.

Multi-line statements must be continued on the next line using the
$ continuation character, because in interactive mode PV=WAVE
terminates every statement not ending with $ by an END state-
ment. A common mistake is to include a block of commands in a
FOR loop inside a command file:

Note

FOR I = 1,10 DO BEGIN

PRINT, I, ' square root = ', SQRT(I)
PRINT, I, ' square = ', I"2
ENDFOR

In command file mode (this is not the case for functions and pro-
cedures), PV=WAVE compiles and executes each line separately,
causing syntax errors in the example above because no matching
ENDFOR is found on the same line as the BEGIN when the line is
compiled. The above example can be made to work by inserting
an ampersand between each statement in the block of statements
and by terminating each line (except the last) with a $:

FOR I = 1,10 DO BEGIN & §$

PRINT, I, ' square root = ', SQRT(I) & §$
PRINT, I, ' square = ', I"2 & §
ENDFOR

Running PV-WAVE 21

Note |

Note that the combination of the ampersand and the dollar sign is
required. For example, with just an ampersand at the end of each
line, the sample program does not run properly because each line
is compiled as a separate entity. Hence, a syntax error results when
the ENDFOR statement is compiled because it is seen as a single
statement that is not connected to a FOR statement. With the dollar
sign at the end of each line, no compilation occurs until the
ENDFOR statement. For more information on the dollar sign and
ampersand characters, see Special Characters on page 33.

Creating and Running a Function or Procedure

Using an ordinary text editor, you can create files that define pro-
cedures and functions. For example, here’s the program listing for
a file named square. pro that defines a function to square a
number:

FUNCTION SQUARE, NUMBER
RETURN, NUMBER"2
END

The file automatically compiles and executes when being called at
the WAVE> prompt:

WAVE> x = SQUARE(24) & PRINT, x
% Compiled module: SQUARE.
576

The file automatically compiles and executes only under the fol-
lowing circumstances:

» if the file is in the !Path or current directory

and

* the filename is the same as the function or procedure name and
has a . pro extension.

If the file is not the same name as the function, then you must use
the .RUN command to compile it. See the section in this chapter,
WAVE_PATH: Setting Up a Search Path on page 46 for details
about search paths.

22

PV=WAVE User’s Guide for Advantage and CL

Note [

You can also create a function or procedure from the WAVE>
prompt by using the .RUN command. See Creating and Running
Programs Interactively on page 25.

Running Existing Functions and Procedures

Besides being able to create and run your own functions and pro-
cedures, you can also use a variety of functions and procedures
supplied by PV=WAVE. These are known as Standard Library rou-
tines. The source code for these can be found in the wave/1ib/
std subdirectory. An important point to remember is that func-
tions and procedures, whether created or supplied, can be used
inside of program files as well as at the WAVE> prompt.

An example of one useful PV=WAVE function is REBIN. This
function resizes a specified array or vector to new dimensions:

array2 = REBIN(arrayl, 512, 512, /Sample)

An example of a commonly used PV=WAVE procedure is PLOT:
PLOT, X, Y, Color=128

Function calls are in the format:
result = function_name(parameters)

Procedure calls are in the format:

procedure_name [, param;, param;]

Keywords

Notice that the examples of the REBIN function and PLOT proce-
dure use the keywords, Sample and Color. A keyword is normally
followed by an equal sign and a value (for example, Color
=128). Some keywords may be also be specified with the syntax
/Keyword, which is the same as setting the keyword parameter to
1 (for example, Sample=1). Many functions and procedures
employ keywords. For more information about keywords, see
Procedure and Function Parameters on page 234 of the PV-WAVE
Programmer’s Guide.

Running PV-WAVE

23

Relationship Between Keywords and System Variables

For some keywords, the default values are derived from
PV=-WAVE’s system variables. System variables are a special class
of predefined variables available to all applications. All system
variables are characterized by an initial exclamation point (!). For
example, the keyword Color in the example PLOT procedure is
based on the system variable !P.Color. The keyword Color is used
to choose the color. The system variable, !P.Color, contains the
default setting for the keyword Color. You can change the value of
the default:

tek_color
This command loads 32 colors into the color table.

!P.Color = 6
Changes the color to purple which is identified by the number 6.

For more information about system variables, see System Vari-
ables on page 26 of the PV-WAVE Programmer’s Guide.

Creating and Running Main Programs

A main program is a series of statements that are not preceded by
a procedure or function heading (PRO or FUNCTION) and is
compiled as a unit. Main programs can also be created interac-
tively as indicated in the next section. Since there is no heading, it
cannot be called from other routines, and cannot be passed argu-
ments. When PV=WAVE encounters the END statement in a main
program as the result of a .RUN executive command, it compiles
it into the special program named $MAINS and immediately exe-
cutes it as a unit. Afterwards, it can be executed again with the .GO
executive command. For example, for a main program file named
testfile that contains the following statements:

FOR I = 3,5 DO BEGIN

PRINT, 'Square of ', I, ' ="', I"2

PRINT, 'Square root of ', I, ' = ', SQRT(I)
ENDFOR

END

24

PV=WAVE User’s Guide for Advantage and CL

To compile and run this main program file, enter the following at
the WAVE> prompt:

WAVE> .RUN testfile
The results are:

Square of 3 = 9

Square root of 3 = 1.73205
Square of 4 = 16
Square root of 4 = 2.00000
Square of 5 = 25
Square root of 5 = 2.23607

The differences between a main program and a command file are
that main programs must have an END statement, must be exe-
cuted with the .RUN command, and are executed as a unit.
Command files do not have an END statement, are executed by
typing @filename, and are executed one line at a time.

Creating and Running Programs Interactively

At the WAVE> prompt, you can also create and execute programs
interactively. However, a program created with the interactive
method cannot be saved for use in later PV=WAVE sessions unless
you turn on journaling. See Journaling on page 36.

To create a program interactively, you use the .RUN command.
Here’s an example using the .RUN command:

WAVE> .RUN

- FOR I = 0,3 DO BEGIN

- PRINT, 'SQRT of ', I

- PRINT, ' = ', SQRT(I)

- ENDFOR

- END

% Compiled module: $MAINS
SQRT OF 0

= 0.00000

Running PV-WAVE

25

SQRT OF 1
= 1.00000
SQRT OF 2
= 1.41421
SQRT OF 3
= 1.73205

The example program calculates and prints out the square root for
the numbers 0 through 3.

After typing . RUN and pressing <Return>, a dash (-) prompt is
displayed indicating that you are in program mode. When you
have completed the program, you must enter END as the last line
and press <Return>. The message $Compiled module:
$MAINS that displays indicates that this is a main program.

Two other types of programs, procedures and functions, can also
be created from the WAVE> prompt using the .RUN command.
Here’s an example of how to create a function that squares a num-
ber:

WAVE> .RUN

- FUNCTION SQUARE, NUMBER
- RETURN, NUMBER"2

-~ END

$Compiled module: SQUARE

After you type END and press <Return>, the message,
$Compiled module: SQUARE, displays. Now, you can use
the SQUARE function to calculate the square of a number. Nor-
mally, functions and procedures are created in files so that they can
be used in future PV=WAVE sessions. However, occasionally you
may need to create a short program or function that you do not
want to save. The .RUN command provides this option.

Using Executive Commands

PV=WAVE executive commands compile programs, continue
stopped programs, and start previously compiled programs. All
these commands begin with a period. Under UNIX, file names are

26 PV=-WAVE User’s Guide for Advantage and CL

case sensitive, while under VMS, either case may be used. Exec-
utive commands can be executed from files or from the WAVE>
prompt.

Executive commands are summarized in the following table:

Table 2-1: Executive Commands

Command Action

.RUN Compiles and possibly executes text
from files or from the WAVE> prompt.

.RNEW Erases main program variables and then
executes .RUN.

.CON Continues execution of a stopped pro-
gram.

.GO Executes previously compiled main pro-
gram from the beginning of the program.

.STEP Executes a single statement. This com-
mand may be abbreviated as .S.

.SKIP Skips over the next statement and then
single steps.

SIZE Resizes the code area and the data area
used to compile programs in terms of
bytes.

.LOCALS Resizes the data area in terms of local

variables and common block symbols.

Using .RUN

The .RUN command compiles procedures, functions and main
programs. The .RUN command also executes main programs. The
command may be followed by a list of files to be compiled. Sepa-
rate the filenames with blanks or commas:

.RUN file,, ..., file,

If no files are specified with the . RUN command, input is accepted
from the keyboard at the WAVE> prompt until a complete program

Running PV-WAVE

27

unit is entered. The values of all the variables are retained. See
Creating and Running Programs Interactively on page 25.

Files containing PV=WAVE procedures, programs, and functions
are assumed to have the filename extension (suffix) . pro. If the
filename is the same as the actual function or procedure name, the
function or procedure is compiled and executed.

The command arguments —t for terminal listing, or —1 for listing
to a named file, may be used after the command name, and before
the program file names, to produce a numbered program listing
directed to the terminal or to a file. For instance, to see a listing on
the screen as a result of compiling a procedure contained in a file
named analyze.pro:

.RUN -t analyze

To compile the same procedure and save the listing in a file named:
analyze.lis:

.RUN -1 analyze.lis analyze

In listings produced by PV=WAVE, the line number of each state-
ment is printed at the left margin. This number is the same as that
printed in PV=WAVE error statements, simplifying location of the
statement causing the error.

Each level of block nesting is indented four spaces to the right of
the preceding block level to improve the legibility of the pro-
gram’s structure.

Using .RNEW

The .RNEW command compiles and saves procedures and pro-
grams in the same manner as . RUN. However, all variables in the
main program unit, including those in common blocks, are erased.
The —t and —1 switches have the same effect as with . RUN. See
the examples below. Its syntax is:

RNEW file,, ..., file,

28

PV=WAVE User’s Guide for Advantage and CL

Sample Usage of .RUN and .RNEW

Some examples of the . RUN and . RNEW commands are:

.RUN
Accept a program from the keyboard (WAVE> prompt). Retain
the present variables.

.RUN myfile

Compile the file myfile.pro. If myfile.pro is not found in the current
directory, PV=WAVE looks for the file in the directory search
path.

.RUN -t a, b, c
Compiles the files a.pro, b.pro, and c.pro. Lists the programs on
the terminal.

.RNEW -1 myfile.lis myfile, yourfile
Erases all variables. Compiles the files myfile.pro and
yourfile.pro. Produces a listing of myfile in the file myfile.lis.

Using .CON

The .CON command continues execution of a program that has
stopped because of an error, a STOP statement, or a keyboard
interrupt. PV=WAVE saves the location of the beginning of the last
statement executed before an error. If it is possible to correct the
error condition in the interactive mode, the offending statement
may be re-executed by typing . CON. After STOP statements,
.CON continues execution at the next statement.

Execution of a program interrupted by typing <Control>-C may
also be resumed at the point of interruption with the .CON com-
mand.

Using .GO

The .GO command starts execution at the beginning of a previ-
ously compiled main program.

Running PV-WAVE 29

Using .STEP

The .STEP command executes one or more statements in the cur-
rent program starting at the current position, stops, and returns
control to the interactive mode. This command is useful in debug-
ging programs. If the optional argument n is present, it gives the
number of statements to execute, otherwise, a single statement is
executed. The syntax of the .STEP command is:

.STEP [n]

or

.S [n]

Using .SKIP

The .SKIP command skips one or more statements and then single
steps. This command is useful for continuing over a program state-
ment which caused an error. If the optional argument # is present,
it gives the number of statements to skip, otherwise, a single state-
ment is skipped. The syntax is:

SKIP [n]

For example, consider the following program segment:

OPENR, 1, 'missing’
READF, 1, XXX, eosy ooe

If the OPENR procedure fails because the specified file does not
exist, program execution will halt with the OPENR procedure as
the current procedure. Execution may not be resumed with the
executive command .CON because it attempts to re-execute the
offending OPENR procedure, causing the same error.

The remainder of the program can be executed by:

O Opening the correct file manually by typing in a valid OPENR
procedure.

PV=-WAVE User’s Guide for Advantage and CL

O Entering . SKIP, which skips over the incorrect OPENR pro-
cedure.

O Entering . CON, which resumes execution of the program at
the READF procedure.

Using .SIZE
The syntax of the .SIZE command is:

SIZE code_size data_size

The .SIZE command resizes the code area and data area. These
memory areas are used when PV=WAVE programs are compiled.
The code area holds internal instruction codes that the compiler
generates. The data area, also used by the compiler, contains vari-
able name, common block, and keyword information for each
compiled function, procedure, and main program.

After successful compilation, a new memory area of the required
size is allocated to hold the newly compiled program unit.

By default, the size of the code area is 30,000 bytes. The initial
size of the data area is 8,000 bytes (enough space to hold 500 local
variables).

Resizing the code and data areas erases the currently compiled
main program and all main program variables.

Caution

For example, to extend the code and data areas to 40,000 and
10,000 bytes respectively:

.SIZE 40000 10000

The upper limit for both code_size and data_size is over 2 billion
bytes.

Using .LOCALS
The syntax of the .LOCALS command is:
.LOCALS local_vars common_symbols

The .LOCALS command is similar to the .SIZE command, in that
it resizes the data area (the data area is described in the previous

Running PV-WAVE 31

section, Using .SIZE). The .LOCALS command, however, lets
you specify the data area size in terms of local variables and com-
mon block symbols rather than in bytes. This command affects the
size of the data area for the $MAINS-level (commands entered
from the WAVE> prompt), and the initial size of the data area for
compiled procedures and functions.

The two parameters are positional, but not required. If you execute
.LOCALS with no parameters, the data area is set back to its
default value, which is 500 local variables. If you want to use 700
variables at the SMAINS level, enter:

.LOCALS 700

.LOCALS clears and frees the current SMAIN$ data area and code
area. It then allocates a new code area of the same size as the pre-
vious one and a new data area of the specified size.

For compiled procedures and functions, the compiler initially allo-
cates code and data areas of the same size as those that SMAINS$
is currently using. If you get compiler error messages stating that
the code and/or data area of a procedure or function is full, you
must first make the SMAINS code and/or data areas larger with the
.SIZE or .LOCALS executive command. Then when you recom-
pile the procedure or function, the compiler starts with the larger
code and/or data areas.

See also Using the ..LOCALS Compiler Directive on page 244 of
the PV-WAVE Programmer’s Guide.

Using Command Recall

PV=WAVE saves the last 20 command lines you enter. These com-
mand lines can be recalled, edited, and re-entered. For example,
the up cursor key on the keypad recalls the previous command you
entered. Pressing it again recalls the line before that, and so on.
When a command is recalled, it is displayed after the PV=WAVE
prompt and may be edited or entered as is.

The command recall feature is enabled by setting the system vari-
able !Edit_Input to 1, and is disabled by setting it to 0.

32

PV=WAVE User’s Guide for Advantage and CL

Using Line Editing Keys

The command line editing keys and their functions differ some-
what between UNIX and VMS. To interactively see how function
keys are defined, enter:

INFO, /Keys

For more information, about these keys, see the DEFINE_KEY
procedure in Chapter 2, Function and Procedure Reference, in the
PV=WAVE Reference.

Special Characters

This section describes characters with special interpretation and
their function in PV=WAVE. Each character is summarized in
Table 2-2.

Table 2-2: Special Characters

UNIX | VMS Both Function

! First character of system variable names.
Also precedes font commands.

! Delimit string constants or indicate part of
octal or hex constant.

; Begin comment field.

$ Continue current command or issue oper-
ating system command.

" Delimit string constants or precede octal
constants.

Indicate constant is floating-point or start
executive command.

& Separate multiple statements on one line.

End label identifiers.

* Array subscript range.

@ Include file.

Special Characters 33

Table 2-2: Special Characters

UNIX | VMS | Both Function
"C Interrupt.

‘D A Exit.

"\ Y Abort.

exclamation point (!) — Begins the names of PV=-WAVE
system-defined variables. System variables are predefined
variables of a fixed type. Their purpose is to override defaults
for system procedures, to return status information, and to
control the action of PV=WAVE. For more information about
system variables, see System Variables on page 26 of the PV-
WAVE Programmer’s Guide.

apostrophe (') — Delimits string literals and indicates part of
an octal or hexadecimal constant. See String Constants on
page 21 of the PV-WAVE Programmer’s Guide for informa-
tion about using the apostrophe with strings. For the use of the
apostrophe with octal or hexadecimal constants, see Numeric
Constants on page 18 of the PV-WAVE Programmer’s Guide.

semicolon (;) — Begins a comment field of a PV-WAVE
statement. All text on a line following a semicolon is ignored
by PV=WAVE. A line may consist of just a comment or may
contain both a valid statement followed by a comment.

dollar sign ($) — At the end of a line indicates that the current
statement is continued on the following line. The dollar sign
character may appear anywhere a space is legal except within
a string constant. Any number of continuation lines are
allowed.

When the $ character is entered as the first character after the
PV=WAVE prompt, the rest of the line is sent to the operating
system as a command. To send an operating system command
from within a procedure, use the SPAWN command. See
Accessing the Operating System Using SPAWN on page 297 of
the PV-WAVE Programmer’s Guide.

34

PV=-WAVE User’s Guide for Advantage and CL

quotation mark (") — The quotation mark precedes octal
numbers which are always integers and delimits string con-
stants. Examples: "100B is a byte constant equal to 64,
"Don't drink the water." is astring constant. See
String Constants on page 21 of the PV-WAVE Programmer’s
Guide for information about using the quotation mark with
strings. For the use of the quotation mark with octal or hexa-
decimal constants, see Numeric Constants on page 18 of the
PV-WAVE Programmer’s Guide.

period or decimal point (.) — Indicates in a numeric constant
that the number is of floating-point or double-precision type.
Example: 1.0 is a floating-point number.

Also, in response to the WAVE> prompt, the period, if it is the
first character on the line, begins an executive command. For
example:

WAVE> .RUN myfile

causes PV=WAVE to compile the filemyfile.pro. If
myfile.pro contains a main program, the program will
also be executed.

However, if the period is not the first character on the line as
in the following example,

WAVE> .RUN myfile
you receive a syntax error.

Also, the period precedes the name of a tag when referring to
a field within a structure. For example, a reference to a tag
called NAME in a structure stored in the variable A is:
A.NAME. See Defining and Deleting Structures on page 102
of the PV-WAVE Programmer’s Guide.

ampersand (&) — The ampersand separates multiple state-
ments on one line. Statements may be combined until the
maximum line length of 132 characters is reached. For exam-
ple, the following line contains two statements:

I =1 & PRINT, 'VALUE: ', I

Special Characters

35

* colon (:) — Ends label identifiers. Labels may only be refer-
enced by GOTO, and ON_ERROR statements. The following
line contains a statement with the label LOOP1:

LOOPl: x = 2.5

The colon also separates the starting and ending subscripts in
subscript range specifiers. For example A(3:6) designates
the fourth, fifth, sixth, and seventh elements of the variable A.
For more information on subscript ranges, refer to Subscript
Ranges on page 84 of the PV-WAVE Programmer’s Guide. In
addition, the colon is used in CASE statements.

* asterisk (*) — In addition to denoting multiplication, desig-
nates an ending subscript range equal to the size of the
dimension. For example, A (3 : *) represents all elements of
the vector A except the first three elements.

* “at” sign (@) — At the beginning of a line causes the
PV=WAVE compiler to substitute the contents of the com-
mand file whose name appears after @. In addition to
searching the current directory for the file, PV=-WAVE
searches a list of locations where procedures are kept. See
Running a Command File on page 19.

Journaling

Journaling provides a record of an interactive PV=WAVE session.
All text entered at the WAVE> prompt is entered directly into the
file, and any text entered from the terminal in response to any other
input request (such as with the READ procedure) is recorded as a
comment. The result is a file that contains a complete description
of the PV=WAVE session which can be rerun later.

The JOURNAL procedure has the form:
JOURNAL [, param]

where the string prameter param is either a filename (if journaling
is not currently in progress), or an expression to be written to the
file (if journaling is active).

36

PV=-WAVE User’s Guide for Advantage and C

Caution|

The first call to JOURNAL starts the logging process. If no param-
eter is supplied, a journal file named wavesave.pro is created.
If a filename is specified in param, the session’s commands will be
writting to a file of that name.

Under UNIX, creating a new journal file causes any existing file
with the same name to be lost. This includes the default file
wavesave.pro. Use a filename parameter with the JOURNAL
procedure to avoid destroying existing jounral files.

Programmatically Controlling the Journal File

When journaling is not in progress, the value of the system vari-
able Journal is 0. When the journal file is opened, the value of this
system variable is set to the logical unit number of the journal file
that is opened. This fact can be used by PV=WAVE routines to
check if journaling is active. You can send any arbitrary data to
this file using the normal PV=WAVE output routines. In addition,
calling JOURNAL with a parameter while journaling is in
progress results in the parameter being written to the journal file as
if the PRINTF procedure had been used. In other words, the state-
ment:

JOURNAL, param
is equivalent to:

PRINTF, !Journal, param

with one exception — the JOURNAL procedure is not logged to
the file (only its output) while a PRINTF statement is logged to the
file in addition to its output.

Journaling ends when the JOURNAL procedure is called again
without an argument, or when you exit PV=WAVE.The journal file
can be used later as a PV=WAVE command input file to repeat the
session, and it can be edited with any text editor if changes are nec-
essary.

Journaling

37

JOURNAL Procedure — Sample Usage
As an example, consider the following PV=WAVE statements:

JOURNAL, 'demo.pro'
Start journaling to file demo.pro

PRINT, 'Enter a number:

READ, Z
Read the user response into variable Z.

JOURNAL, '; This was inserted with JOURNAL.'

Send a PV=WAVE comment to the journal file using the JOUR-
NAL procedure.

PRINTF, !Journal, '; This was inserted ' + $
'with PRINTF.'
Send another comment using PRINTF.

JOURNAL
End journaling.

If these statements are executed by a user named bobf on a Sun
workstation named peanut, the resulting journal file demo.pro
will look something like:

; SUN WAVE Journal File for bobf@peanut
; Working directory: /home/bobf/wavedemo
; Date: Mon Aug 29 19:38:51 1992

PRINT, 'Enter a number:

; Enter a number:

READ, Z

; 100

; This was inserted with JOURNAL.

PRINTF, !Journal, '; This was inserted ' +$
'with PRINTF.'

; This was inserted with PRINTF.

Note that the input data to the READ statement is shown as a com-
ment. In addition, the statement to insert the text using JOURNAL
does not appear.

38 PV-WAVE User’s Guide for Advantage and CL

Saving and Restoring Sessions

The SAVE and RESTORE procedures are used together to save
the state of variables, system variables, and compiled user-written
procedures and functions. The saved session can then be restored
at a later time. This ability to “checkpoint” a session and then
recover it later can be very convenient. Save files can be used for
many purposes:

Save files can be used to recover variables that are used from
session to session. A startup file can be used to execute the
RESTORE command every time PV=WAVE is started. See
the discussion of startup files in WAVE_STARTUP: Using a
Startup Command File on page 48 for more details.

The state of a PV=WAVE session can be saved, then quickly
restored to the same point, allowing you to stop working, and
then later resume at a convenient time.

Saved files relieve you of the need to remember the dimen-
sions of arrays and other details. It is very convenient to store
images this way. For example, if the three variables R, G, and
B hold the colortable vectors, and the variable Image holds
the image data, the PV=WAVE statement:

SAVE, Filename='image.dat', R, G, B, Image

saves everything required to display the image properly, in a
file named image.dat. At a later time, the command:

RESTORE, 'image.dat'

will restore the four variables from the file.

Long iterative jobs can save partial results in Save/Restore
format to guard against losing data if some unexpected event
such as a machine crash were to occur.

Saving and Restoring Sessions 39

Using the SAVE Procedure

You can save user-generated variables, system variables, compiled
procedures, and compiled functions for future PV=WAVE ses-
sions.

Saving for Future PV-WAVE Sessions

The SAVE procedure saves variables, system variables, and
compiled user-written procedures and functions in a file, using an
efficient binary format, for later recovery by RESTORE. It has the
form:

SAVE [, vary, ..., var,]

where var,, are the named variables to be saved. For information
on keyword for the SAVE procedure, refer to Chapter 2, Function
and Procedure Reference in the PV=WAVE Reference.

Under UNIX, creating a new Save file causes any existing file with
the same name to be lost. Use the Filename keyword with SAVE
to avoid destroying desired files. For more information, see Chap-
ter 2, Function and Procedure Reference in the PV=WAVE
Reference.

Using the RESTORE Procedure

The RESTORE procedure restores the objects previously saved in
a save file by the SAVE procedure.

RESTORE has the form:
RESTORE [, filename]

where filename is the name of the save file to be used. If filename
is not supplied, the filename wavesave.dat is used. In addi-
tion, you can use keywords with RESTORE. For a description of
these keywords, see Chapter 2, Function and Procedure Reference
in the PV=WAVE Reference.

40

PV=WAVE User’s Guide for Advantage and CL

Situations in which the contents of the file will not be restored are:

* When attempting to restore a structure variable, the structure
of the saved variable must either not exist, or must agree with
the existing structure definition. If the structure is already
defined and does not match, RESTORE issues an error mes-
sage, skips the variable in question, and continues with the
next variable in the file. This also applies to system variables.

Visual Numerics, Inc., reserves the right to change the struc-
ture of PV=WAVE system variables, although such changes
are not anticipated. Generally, there is little need to save sys-
tem variables, so this restriction is not a problem.

Caution

* Read-only system variables are not restored. RESTORE qui-
etly skips over such variables in the file unless the Verbose
keyword is present. In this case an informative message is
issued as the variable is skipped.

Using PV-WAVE in Runtime Mode

PV=WAVE can interpret and execute two kinds of files: source
files and compiled files.

* Source Files — Functions and procedures saved as regular
ASCII files with a . pro filename extension. When a function
or procedure of this type is called, it is first compiled, then
executed by PV=WAVE.

* Compiled Files — Functions and procedures that are first
compiled in PV=WAVE, then saved with the COMPILE pro-
cedure. By default, such files are given a . cpr filename
extension. Because a file of this type is already compiled, it
can be executed more quickly than a . pro file.

For detailed information on the COMPILE procedure, see the
PV=WAVE Reference.

This ability to handle both source and compiled files allows
PV=WAVE to be run in two different modes:

Using PV-WAVE in Runtime Mode 41

* Interactive mode — The mode normally used for PV=WAVE
application development and direct access to the PV=-WAVE
command line.

* Runtime mode — Allows direct execution of PV=WAVE
applications composed of compiled routines that have been
saved with the COMPILE procedure. The runtime mode is
described in the following sections.

Starting PV-WAVE in Runtime Mode

In runtime mode, you can run a PV=WAVE application directly
from the operating system prompt. When the application is fin-
ished running, control returns to the operating system level.

The application must first be compiled in PV=WAVE and saved
with the COMPILE procedure. For example, if the procedure
called images is compiled in PV=WAVE, the command:

COMPILE, ’'images’

saves a file containing the compiled procedure. By default, this file
is called images.cpr, and it is saved in the current working
directory. For detailed information on the COMPILE procedure,
see the PV=WAVE Reference.

To execute the compiled, saved application called images.cpr
from the operating system prompt, enter the following command,
where -r is a flag that specifies runtime mode:

wave -r images

When the application is finished running, control is returned to the
operating system prompt. Note that the . cpr extension is not
used.

You can set the default mode to “runtime” with the environment
variable WAVE_FEATURE_TYPE by typing on a UNIX system:

setenv WAVE FEATURE TYPE RT
On a VMS system, enter:

DEFINE WAVE_ FEATURE TYPE RT

42 PV=WAVE User’s Guide for Advantage and CL

Now, the -r flag is not needed, and you can run the application by
entering:

wave images

The read-only system variable !Feature_Type allows you to distin-
guish between runtime mode and normal, interactive mode. This
system variable simply reflects the current setting of the
WAVE_FEATURE_TYPE environment variable (UNIX) or logical
(VMS).

More than one saved compiled file can be executed at a time from
the operating system prompt. Just separate the application file-
names with spaces, as follows:

wave file 1 file 2 file 3 ...

The Search Path for Compiled Routine Files

Whenever a user-written procedure or function is called,
PV=WAVE searches first for saved, compiled files (. cpr files)
with the same name as the called routine. If a saved, compiled file
is not found, PV=WAVE searches for a source file (. pro file).
PV=WAVE searches the current directory and all directories spec-
ified in the !Path directory path.

If you place a . pro file in the current working directory that has
the same name as a . cpr file further along the directory path, the
.cpr file will always be found and executed first. To explicitly
execute the . pro file, compile it with the .RUN command or
remove the . cpr file from the !Path directory path.

Note

The compiled (. cpr) file must have the same name as the called
routine. If the calling name of an application program is images,
then the saved, compiled file must be called images.cpr.

Developing Runtime Applications

Applications developed for operation in PV=WAVE’s runtime
mode must adhere to the following guidelines:

* Only PV-WAVE routines that are compiled and saved with the
COMPILE command can be executed in runtime mode.

Using PV-WAVE in Runtime Mode 43

The startup file pointed to by the WAVE_RT_STARTUP envi-
ronment variable (UNIX) or logical (VMS) must be compiled
and saved with the COMPILE command. The startup file must
be in a directory pointed to by the WAVE_ PATH environment
variable (UNIX) or logical (VMS). For more information on
this startup file, see WAVE_RT_STARTUP: Using a Startup
Procedure in Runtime Mode on page 51.

PV=WAVE executive commands .RUN, .RNEW, .GO, .STEP,
.SKIP, .CON, and the STOP routine are not recognized in runt-
ime mode.

PV=WAVE breakpoints specified with the BREAKPOINT
procedure are not recognized in runtime mode.

Any errors that occur in runtime mode are reported as usual,
and control is returned to the operating system prompt.

Modifying Your PV-WAVE Environment

Note =~

Under UNIX, PV=WAVE uses environment variables to determine
its initial state. Under VMS, logical names are used for the same
purpose. In either case the names and functions are the same. This
section explains how to modify or customize environment vari-
ables and logicals.

Normally you do not need to alter your environment. If PV=WAVE
is installed properly, your environment will be already set up. The
information in this section applies only if you wish to modify or
customize your environment.

WAVE_DEVICE: Defining Your Terminal or Window System

In order to function properly, PV=WAVE must know the type of
terminal or window system you wish to use. By default, it assumes
X, the X Window System. If you wish, this default can be changed,
as described below.

44

PV=WAVE User’s Guide for Advantage and CL

Changing the Default Device on a UNIX System

PV=WAVE reads the value of the environment variable
WAVE_DEVICE when it starts. If WAVE_DEVICE is defined,
PV=WAVE calls the procedure SET_PLOT with this string. For
example, to use PV=WAVE with Tektronix terminals, include the
following command in your .login (or .profile) file:

setenv WAVE_DEVICE tek

The device name can be entered in either upper or lower case. If
WAVE_DEVICE is defined, it must contain the name of a valid
PV=WAVE graphics device. See the description of SET_PLOT in
Selecting the Output Device with SET_PLOT on page A-3 of this
manual for a complete list of device names.

Changing the Default Device on a VMS System

PV=WAVE reads the value of the logical name WAVE_DEVICE
when it starts. If WAVE_DEVICE is present, PV=WAVE calls the
procedure SET_PLOT with this string. For example, to use
PV=WAVE with Tektronix terminals, include the following com-
mand in your LOGIN.COM file:

$ DEFINE WAVE DEVICE tek

WAVE_DIR: Ensuring Access to Required Files

WAVE_DIR is the root of the PV-WAVE directory structure. This
environment variable is defined in wwsetup. All PV-WAVE files
are located in subdirectories of WAVE_DIR.

Setting WAVE_DIR on a UNIX System

The WAVE_DIR environment variable must be correctly defined
in order for PV=WAVE to run properly. If WAVE_DIR is not
defined, PV=WAVE assumes a default of /usr/local/lib/
wave.

Modifying Your PV-WAVE Environment 45

WAVE_DIR is defined in the wvsetup file. To make sure that
you have WAVE_DIR properly defined, enter the following com-
mand at the UNIX prompt:

source <maindir>/wave/bin/wvsetup

Setting WAVE_DIR on a VMS System

The WAVE_DIR logical must be correctly defined in order for
PV=WAVE to run properly. For example, if the PV=WAVE distri-
bution is located in DUA1 : [WAVE] on your system, enter the
following DCL command:

$ DEFINE WAVE_DIR DUA1l:[WAVE.]/trans= §
(conceal, term)

WAVE_DIR must be defined using the physical device name of the
disk. Most sites use logical names to refer to disks. If you wish to
define WAVE_ DIRinterms of the disk’s logical name, use the DCL
F$TRNLNM lexical function to translate the name.

For example, if the main PV=-WAVE directory is
DISKA: [WAVE]:

$ DEFINE WAVE_DIR "FSTRNLNM(""DISKA"")' §
[WAVE.]/trans=(conceal, term)

WAVE_PATH: Setting Up a Search Path

WAVE_PATH sets the function and procedure library directory
search path. This environment variable is also defined in
wvsetup. The search path is a list of locations to search if the
procedure or function is not found in the current directory. The
current directory is always searched first. PV=WAVE then looks
for the function or procedure in the locations specified by the
PV-WAVE system variable !Path. The details of how !Path is ini-
tialized differ between UNIX and VMS, although the overall
concept is similar. For more information on system variables, see
System Variables on page 26 of the PV-WAVE Programmer’s
Guide.

46

PV=WAVE User’s Guide for Advantage and CL

Setting Up WAVE_PATH on a UNIX System

The environment variable, WAVE_PATH is a colon-separated list
of directories. If WAVE_PATH is not defined, a default of /usr/
local/lib/wave/1libis assumed. This is consistent with the
default value assumed for WAVE_DIR as defined in the wwsetup
file. Each user may add directories to WAVE_PATH that contain
PV-WAVE programs, procedures, functions, and “include” files.
You may find it convenient to add to the value that is already
defined in your wvsetup file. For example:

setenv WAVE_PATH $WAVE_PATH":"/user/mylib

This command adds the directory /user/mylib to the existing
variable WAVE_PATH.

!Path is a colon-separated list of directories, similar to the PATH
environment variable that UNIX uses to locate commands. When
PV=WAVE starts, !Path is initialized from the environment vari-
able WAVE_PATH. The value of !Path may be changed once you
are running PV=WAVE. For example, the following command
adds the directory /usr2/project/wave_files to the
beginning of the search path:

WAVE> !Path = '/usr2/home/wave_files:' + !Path

Setting Up WAVE_PATH on a VMS System

WAVE_PATH is comma-separated list of directories and library
text files. Text libraries are distinguished by prepending an “@”
character to their name. If WAVE_ PATH is not defined, a default of
@WAVE_DIR: [LIB]USERLIB is assumed. Each user may
assign WAVE_PATH to a unique combination of directories and
text libraries that contain PV=WAVE programs, procedures, func-
tions, and “include” files. You may find it convenient to set up this
variable in your LOGIN.COM file. For example:

$ DEFINE WAVE_PATH §$
"DISKA: [USER.WAVELIB], $
@WAVE_DIR:[LIB]USERLIB.TLB"

Modifying Your PV-WAVE Environment 47

causes PV=WAVE to search for programs first in the current direc-
tory, then in the directory DISKA: [USER.WAVELIB], and
finally in the PV=WAVE Standard library, which is supplied by
Visual Numerics, Inc., as a VMS text library. For more informa-
tion on VMS text libraries, see VMS Procedure Libraries on page
251 of the PV-WAVE Programmer’s Guide.

WAVE_PATH can also be defined as a multi-valued logical name
(for example a search list logical). Therefore, the above example
can also be written as:

$ DEFINE WAVE PATH DISKA:[USER.WAVELIB], $
"@WAVE_DIR:[LIB]USERLIB.TLB"

PV=WAVE simply takes the various translations and concatenates
them together into a comma separated list. Note that the quotes
around the second translation in this example are necessary to
keep DCL from seeing the “@” character as an invitation to exe-
cute a command file.

Under VMS, !Path is a comma-separated list of directories and
text libraries. Text libraries are distinguished by prepending an
“@” character to their name. When PV=WAVE starts, !Path is ini-
tialized from the logical name WAVE_PATH. The value may be
changed once you are running PV=WAVE. For example, the fol-
lowing command adds the DISKA: [PROJECTLIB] directory to
the beginning of the search path:

WAVE> !Path = 'DISKA:[PROJECTLIB],' + !Path

WAVE_STARTUP: Using a Startup Command File

WAVE_STARTUP points to the name of a command file that is
executed by PV=WAVE on initialization. The startup file contains
a series of PV=WAVE statements and is executed each time
PV-WAVE is started. Common uses are to compile frequently-
used procedures or functions, to load data, and to perform other
useful operations. It contains PV=WAVE statements which are
individually compiled and executed, in the same manner as com-
mand file execution. For more information on command files, see
Running a Command File on page 19.

48

PV=WAVE User’s Guide for Advantage and CL

The default startup file for UNIX is called wavestartup and is
located in <path>/wave/bin. For VMS the default file is
wavestartup.dat and is located in:

WAVE_DIR:[000000.BIN]

The wavestartup file turns off the compiler messages, sets up
the WAVE> prompt, and then calls the Standard library routine
setdemo. pro. This routine sets up the default key bindings for
the function keys and displays their definitions upon entering
PV=WAVE. For more information about setdemo . pro, see
Chapter 2, Function and Procedure Reference, in the PV=WAVE
Reference.

Using a Startup File Under UNIX

To use a PV=WAVE startup file under UNIX, set the environment
variable WAVE__STARTUP to the name of the file to be executed.
For example, assume the startup file named startfile con-
tains the following statements:

.RUN add.pro
.RUN square.pro
INFO

Set the environment variable with the setenv command:

setenv WAVE_STARTUP startfile

When you start PV=WAVE by entering wave at the UNIX prompt,
you get the following display:

PV-WAVE. Version ...

% Compiled module: ADD.
% Compiled module: SQUARE.
% At SMAINS .

Code area used: 0.00% (0/16384), Data area
used: 0.05% (2/4096)

local variables: 0, # parameters: 0

Modifying Your PV-WAVE Environment 49

Saved Procedures:
ADD

Saved Functions:
SQUARE

WAVE>

The startup file compiles the ADD procedure and the SQUARE
function, and displays general information about the current status
of PV=WAVE before displaying the WAVE> prompt.

Using a Startup File Under VMS

To use a PV=WAVE startup file under VMS, assign the VMS log-
ical name WAVE_STARTUP to the name of the file to be executed.

The procedure search path, !Path, is used to search for the file if it
is not in the current directory.

To define a startup file named startfile, enter:
DEFINE WAVE_STARTUP startfile

When you enter wave at the operating system prompt, the file is
executed.

WAVE_FEATURE_TYPE: Setting the Default Operating Mode

The environment variable WAVE_FEATURE_TYPE lets you set
the default operating mode of PV=WAVE to “runtime”. When this
environment variable is set to RT, compiled PV=WAVE applica-
tions can be executed directly from the operating system prompt
without using the —r option. For example:

% setenv WAVE_FEATURE_TYPE RT
Set the environment variable.

% wave appname
Run a compiled, saved PV-WAVE application called appname.

50 PV=WAVE User’s Guide for Advantage and CL

WAVE_RT_STARTUP: Using a Startup Procedure in Runtime
Mode

WAVE_RT_STARTUP points to the name of a compiled procedure
file that is executed when PV=WAVE initializes in runtime mode.
The startup file may contain PV=WAVE routines that are executed
each time PV=WAVE is started in runtime mode. For more infor-
mation on saving and using compiled routines, see Using PV-
WAVE in Runtime Mode on page 41.

On a UNIX system, the default startup file for runtime mode is:

$WAVE_DIR/lib/std/rtwavestartup.cpr

On a VMS system, the default startup file for runtime mode is:

WAVE_DIR:[000000.LIB.STD]RTWAVESTARTUP.CPR

WAVE_GUI: Selecting the GUI on Sun Workstations

WAVE_GUTI allows you to explicitly set the look-and-feel of
Graphical User Interface (GUI) used for WAVE Widgets and
Widget Toolbox applications running on a Sun workstation. On a
Sun workstation, the choices are either Motif or OPEN WIN-
DOWS. On all other types of workstations, Motif is the only type
of GUI available, and thus setting this environment variable has no
effect on those platforms.

If you are running on a Sun workstation, you can set the GUI to
OPEN WINDOWS (the default) by entering the following lines at
the operating system prompt:

% setenv WAVE_GUI OLIT
% source $WAVE_DIR/bin/wvsetup

You can set the GUI to Motif by entering:
% setenv WAVE_GUI Motif

% source $WAVE_DIR/bin/wvsetup

Modifying Your PV-WAVE Environment 51

Note that you must source the wvsetup file after setting the
WAVE_GUI environment variable. Otherwise, the change will
have no effect in the subsequent PV=WAVE session.

Changing the PV-WAVE Prompt

The text string PV=WAVE uses to prompt you for input is specified
by the system variable !Prompt. You can change the prompt by set-
ting this system variable to the new prompt string. The prompt is
currently defined in the file wavestartup for UNIX and
WAVESTARTUP.DAT for VMS.

Here’s an example showing how to tailor your prompt to display
text:

!Prompt = 'Hello World!> '

Here’s another example making PV=WAVE ring the bell on the
terminal without echoing visible text when prompting:

!Prompt = '\007'

(The ASCII code for the bell is 7.) It does not have a printable rep-
resentation, so it is specified using the octal escape sequence
\007. Such sequences are described in Representing Non-print-
able Characters on page 22 of the PV-WAVE Programmer’s
Guide.

You can also place a prompt definition in your WAVE_STARTUP
file, as described on WAVE_STARTUP: Using a Startup Command
File on page 48.

For an alternate way to modify the prompt, see the PROMPT pro-
cedure in the PV=WAVE Reference.

Defining Keyboard Shortcuts

Function keys may be equated to a character string using the
DEFINE_KEY procedure. For example, the <R4> key on a Sun-
style keyboard or the <PF4> key on a DEC keyboard, can be
equated to the string PLOT, as shown in the example below. This

52

PV=WAVE User’s Guide for Advantage and CL

allows frequently used strings and commands to be entered with a
single key stroke.

For detailed information on DEFINE_KEY, see the description in
the PV=WAVE Reference.

The PV=WAVE command INFO, /Keys displays the current
definition of all the function keys.

Tip' A natural place to put your key definitions is in the startup file so
that the function keys are defined when PV=WAVE is initial-
ized.The defaults for the key definitions are set up with the
setdemo. pro procedure in the wavestartup file. See
WAVE_STARTUP: Using a Startup Command File on page 48.

Using PV-WAVE with X Windows

The interface to the X Windows system is described in detail in the
Appendix A, Output Devices and Window Systems. This section
explains briefly how to set up the X Windows system to work with
PV=WAVE.

Note V The X Window System is the default windowing system for all
available PV=WAVE platforms.

If You Are Running Under X Windows

Little or no customizing is required to use PV=WAVE with the X
Windows system. You can control the number of colors used by
PV=WAVE, if and how windows are repainted, and the type of
color system (visual class).

Be sure that your system is properly set up to display X graphics.
For UNIX systems under the C shell, you may need to enter:

% setenv DISPLAY hostname:0.0
% xhost hostname

Modifying Your PV-WAVE Environment 53

For VMS systems, you may need to enter:

$ SET DISPLAY /CREATE /NODE=nodename -
/SCREEN=0.0 /TRANSPORT=transport_type

where hostname or nodename is the name of the system on which
you want graphics to be displayed.

54

PV=WAVE User’s Guide for Advantage and CL

Displaying 2D Data

PV=WAVE provides routines for plotting data in a variety of ways.
These routines allow general X versus Y plots, contouring, mesh
surface plots, and perspective plotting, in an extremely flexible
manner without requiring you to write complicated programs.
These plotting and graphic routines are designed to allow easy
visualization of data during data analysis.

Optional keyword parameters and system variables allow straight-
forward customization of the appearance of the results: (i.e.,
specification of scaling, axis style, colors, etc.).

This chapter contains numerous examples of scientific graphics in
which one variable is plotted as a function of another. The proce-
dures that display three-dimensional data, CONTOUR and
SURFACE, are explained in detail in Chapter 4, Displaying 3D
Data. Procedures used to display and process images are discussed
in Chapter 5, Displaying Images.

55

Summary of 2D Plotting and General Graphics Routines

This section lists the 2D plotting procedures that are described in
this chapter. In addition, related graphics procedures that are often
used with the plotting procedures are listed.

Plotting Routines For Two-Dimensional Data

AXIS [, x, y, 2]

Draw an annotated axis.
OPLOT, x_array, y_array

Overplot array over old axis.
PLOT, x_array, y_array

Plot array on new axis, set scaling.
PLOT_IO, x_array, y_array

Plot with linear-log scaling.
PLOT_Ol, x_array, y_array

Plot with log-linear scaling.
PLOT_OO, x_array, y_array

Plot with log-log scaling.

General Graphics Routines

CURSOR, x_pos, y_pos
Read graphics cursor.
DEVICE
Control device-specific functions.
ERASE
Erase the screen.
PLOTS, x, y [, 2]
Plot lines and points.
POLYFILL, x, y [, 2]
Fill irregular polygons with color or pattern.
POLYSHADE, vertices, polygons
Draw shaded surface representation of solids.
SET_PLOT, device_name
Set graphics output device.

56

PV=WAVE User’s Guide for Advantage and CL

TVCRS, x_pos, y_pos

Set cursor position and visibility.
USERSYM, x, y, z

Define a symbol for plotting.
XYOUTS, x, y, string

Display text at a specified location.

Customizing Plots with Keyword Parameters

The PV=WAVE plotting procedures are designed to produce
acceptable results for most applications with a minimum amount
of effort. The plotting and graphics keyword parameters and sys-
tem variables, which are described in Chapter 4 System Variables,
in the PV=WAVE Reference, allow you to customize your graphics
output. Examples in this chapter show how to use many of the
major keywords and system variables used to modify 2D graphics.

Keyword Correspondence with System Variables

Many of the plotting keyword parameters correspond directly to
fields in the system variables !P, !X, 'Y, !Z, or !PDT. When you
specify a keyword parameter name and value in a call, that value
affects only the current call — the corresponding system variable
field is not changed. Changing the value of a system variable field
changes the default for that particular parameter and remains in
effect until explicitly changed. The system variables and the cor-
responding keywords that are used to modify graphics are
described in Chapter 3 Graphics and Plotting Keywords, in the
PV=WAVE Reference, and in Chapter 4 System Variables, in the
PV=WAVE Reference.

Example of Changing the Default Color Index

The color index controls the color of text, lines, axes, and data in
2D plots. By default, the color index is set in the !P.Color field of
the !P system variable. This default value is normally set to the

Customizing Plots with Keyword Parameters 57

number of available colors minus 1. (If your system supports 256
colors, !P.Color is set to 255 by default.)

Using the Color Keyword Parameter

You can override this default value at any time by including the
Color keyword in the graphics routine call. For example, to set the
color of a plot to color index 12, enter:

PLOT, X, Y, Color = 12

Because keyword parameters only modify the current function or
procedure call, future plots are not affected.

Changing the !P.Color System Variable

To change the color for all plots produced during the current ses-
sion, you can modify !P.Color. For example, to change the default
color index to 12, enter:

!P.Color = 12

Interpretation of the Color Index

The interpretation of the color index varies among the devices sup-
ported by PV=WAVE. With color video displays, this index selects
a color (normally an RGB triple) stored in a device table. You can
control the color selected by each color index with the TVLCT
procedure which loads the device color tables. TVLCT is
described in the PV=WAVE Reference.

Other devices have a fixed color associated with each color index.
With plotters, for example, the correspondence between colors
and color index is established by the order of the pens in the
carousel.

58 PV=WAVE User’s Guide for Advantage and CL

Three Graphics Coordinate Systems

You may specify coordinates to PV=WAVE in data, device, or nor-
mal coordinate systems. These systems are explained in the
following sections.

Almost all the PV=WAVE graphics procedures will accept param-
eters in any of these coordinate systems. Most procedures use the
data coordinate system by default. Routines beginning with the
letters TV are notable exceptions. They use device coordinates by
default. You can explicitly specify the coordinate system by
including one of the keyword parameters Data, Device, or Normal
in the call. For example:

PLOT, x, y, /Normal

Data Coordinate System

The data coordinate system is the coordinate system established
by the most recent PLOT, CONTOUR, or SURFACE procedure.
This system usually spans the plot window, the area bounded by
the plot axes, with a range identical to the range of the plotted data.
The system may have two or three dimensions, and may be linear,
logarithmic, or semi-logarithmic.

Data is the default coordinate system for most graphics proce-
dures.

Device Coordinate System

The device coordinate system is the physical coordinate system of
the selected plotting device. Device coordinates are integers, rang-
ing from (0,0) at the bottom-left corner, to (V, — 1, Vy—1) at the
upper-right corner. V, and V), are the number of columns and rows
addressable by the device.

Three Graphics Coordinate Systems 59

Normal Coordinate System

The normalized coordinate system ranges from (0.0, 0.0) to
(1.0, 1.0) over the three axes.

Coordinate System Conversion

This section describes how PV=WAVE converts from one coordi-
nate system to another.

The system variables !D, !P, !X, Y, and !Z contain the information
necessary to convert from one coordinate system to another. The
relevant fields of these system variables are explained below, and
formulas are given for conversions to and from each coordinate
system. Three-dimensional coordinates are discussed in Chapter
4, Displaying 3D Data.

In the following discussion, D is a data coordinate, N is a normal-

ized coordinate, and R is a raw device coordinate.

The fields !D.X_VSize and !D.Y_VSize always contain the size of
the visible area of the currently selected display or drawing sur-
face. Let V, and V}, represent these two sizes.

The field !X.S, is a two-element array that contains the parameters
of the linear equation converting data coordinates to normalized
coordinates. !X.S(0) is the intercept, and !X.S(1) is the slope.
1X.Type is O for a linear X axis, and is 1 for a logarithmic X axis.
The Y and Z axes are handled in the same manner, using the sys-
tem variables !'Y and !Z.

With the above variables defined, the two-dimensional coordinate
conversions for the X coordinate may be written as follows:

D, = Data coordinate
N, = Normalized coordinate
R, = Device coordinate

V, = Device X size, in device coordinates

60

PV=WAVE User’s Guide for Advantage and CL

X; = 'X.S(i), scaling parameter
i XO + Xllogm Dx logarithmic

Vx(Xy + X1Dx) linear

Data to Device R, =
* { Vi(X, + X,logo D,) logarithmic

Normal to Device R, = N, V,

(Nx—Xp) / Xy linear

Normal to Data D, = . .
10 (Nx—Xo) 1 X1 logarithmic

(R/V,—Xg)/X; linear

Device to Data D, = i '
10 (Rx/Vx — X0)/X1 logarithmic

Device to Normal N, =R, / V,

The Y and Z axis coordinates are converted in exactly the same
manner, with the exception that there is no Z device coordinate and
logarithmic Z axes are not permitted.

Drawing X Versus Y Plots

This section illustrates the use of the basic X versus Y plotting rou-
tines, PLOT and OPLOT.

The PLOT procedure produces linear-linear plots. The procedures
PLOT_IO, PLOT_OI, and PLOT_OO are identical to PLOT,
except they produce linear-log, log-linear, and log-log plots,
respectively.

Data from the U.S. Scholastic Aptitude Test (SAT), from the years
1967, 1970, and from 1975 to 1983, are used in the following
examples.

Variables defined in the following examples are used in later
examples in this chapter.

Drawing X Versus Y Plots 61

Producing a Basic XY Plot

The following PV=WAVE statements create and initialize the vari-
ables VERBM, VERBF, MATHM, and MATHF, which contain the
verbal and math scores for males and females for the 11 observa-

tions:

VERBM [463, 459, 437, 433, 431, 433, $
431, 428, 430, 431, 430]

VERBF [468, 461, 431, 430, 427, 425, S
423, 420, 418, 421, 420]

MATHM [514, 509, 495, 497, 497, 494, $
493, 491, 492, 493, 493]

MATHF (467, 465, 449, 446, 445, 444, $
443, 443, 443, 443, 445]

A vector in which each element contains the year of the score is
constructed with the statement:

YEAR = [1967, 1970, INDGEN(9) + 1975]

The PLOT procedure, which produces an X versus Y plot on a
new set of axes, requires one or two parameters: a vector of Y
values, or a vector of X values followed by a vector of Y values.
Figure 3-1 was produced by the statement:

PLOT, YEAR, VERBM

62

PV=WAVE User’s Guide for Advantage and CL

S00F : T T ; .

- T —]

C e ——]
400 .
300 -
200 .
100 =

0 F s . . L 1 L \ 1 . L L L ! . 3
1965 1970 1975 :980 1985

Figure 3-1 Initial 2D plot.

You can abort any of the higher-level graphics procedures (e.g.,
PLOT, OPLOT, CONTOUR, and SURFACE) by typing Control-
C.

Note

Scaling the Plot Axes and Adding Titles

The fluctuations in the data are hard to see because the scores
range from 428 to 463, and the plot’s Y axis is scaled from O to
500. Two factors cause this effect. By default, PV=WAVE sets the
minimum Y axis value of linear plots to 0 if the Y data are all pos-
itive. The maximum axis value is automatically set by PV=WAVE
from the maximum Y data value. In addition, PV=WAVE attempts
to produce from 3 to 6 tick mark intervals that are in increments of
an integer power of 10 times 2, 2.5, 5, or 10. In this example, this
rounding effect causes the maximum axis value to be 500, rather
than 463.

Drawing X Versus Y Plots 63

Using YNozero to Scale the Y Axis

The YNozero keyword parameter inhibits setting the Y axis mini-
mum to 0 when given positive, non-zero data. Figure 3-2
illustrates the data plotted using this keyword. The Y axis now
ranges from 420 to 480, because PV=WAVE selected 3 tick mark
intervals of 20.

You can make /Ynozero the default in subsequent plots by set-
ting bit 4 of !Y.Styleto 1, (!Y.Style = 16).

Other bits in the Style field of the axis system variables !X, !'Y, and
1Z are described in the Chapter 4 System Variables, in the
PV=WAVE Reference. Briefly: Other bits in the Style field extend
the axes, (providing a margin around the data), suppress the axis
and its notation, and suppress the box-style axes by drawing only
a left and bottom axis.

Adding Titles

The Title, XTitle, and YTitle keywords are used to produce axis
titles and a main title in the plot shown in Figure 3-2. This figure
was produced with the statement:

PLOT, YEAR, VERBM, /YNozero, §$
Title = 'Verbal SAT, Male’, $
Xtitle = ’'Year’, Ytitle = ’'Score’

PV=WAVE User’s Guide for Advantage and CL

Verbal SAT, Male
480 T I

460 -

<
o + E
1%
n
|- -
440 — —
- 4
4200 . . ' U . | . . 1 " . L
1965 1970 1975 1980 1985

Year

Figure 3-2 Properly scaled plot with added title annotation

Specifying the Range of the Axes

The range of the X, Y, or Z axes can be explicitly specified with
the XRange, YRange, and ZRange keyword parameters. The argu-
ment of the keyword parameter is a two-element vector containing
the minimum and maximum axis values.

For example, if we wish to constrain the X axis to the years 1975
to 1983, the following keyword parameter is included in the call to
PLOT:

XRange = [1975, 1983]

The effect of the Ynozero keyword, explained in the previous sec-
tion, is identical to that obtained by specifying the following
YRange keyword parameter in the call to PLOT:

YRange = [MIN(Y), MAX(Y)]

Drawing X Versus Y Plots 65

Specifying Exact Tick Intervals with YStyle = 1

As explained in the previous section, PV=WAVE attempts to pro-
duce even tick intervals, and the axis range selected by PV=WAVE
may be slightly larger than that given with the XRange, YRange,

and ZRange keywords. To obtain the exact specified interval, set
the X axis style parameter to 1 (XStyle = 1).

The call combining all these options is:

PLOT, YEAR, VERBM, /Ynozero, §$
Title = 'Verbal SAT, Male’, $
Xtitle = ’'Year’, Ytitle = ’'Score’, §$
Xrange = [1975, 1983], /Xstyle

Figure 3-3 illustrates the result.

Verbal SAT, Mcle
- .

436 —

| IR T N S B

434

Score

R
1

ol

430

T T

L

428 . . T . PR M P . PR
1974 1976 1978 1980 1982 1984
Year

Figure 3-3 Plot with X axis range of 1975 — 1983.

Plotting Additional Data on the Same Axes

Additional data may be added to existing plots with the OPLOT
procedure. Each call to PLOT establishes the plot window (the
region of the display enclosed by the axes), the axis types (linear

66 PV=WAVE User’s Guide for Advantage and CL

Score

or log), and the scaling. This information is saved in the system
variables !P, !X, and 'Y, and used by subsequent calls to OPLOT.

It may be useful to change the color index, linestyle, or line thick-
ness parameters in each call to OPLOT to distinguish the data sets.
For a table describing the linestyle associated with each index, see
the description of the !P.Linestyle system variable in Chapter 4
System Variables, in the PV=WAVE Reference.

Figure 3-4 illustrates a plot showing all four data sets, VERBF,
VERBM, MATHF, and MATHM. Each data set except the first was
plotted with a different line style and was produced by a call to
OPLOT.

SAT Scores
i

500

480

LA B S N (N N S

440

420

PSS TN YT AN T N VO T N T WO T S N WY W B NN

LI B R B B B A

400 L . s s 1 L L " s Il L " " " | L
1965 1970 1975 1980
Year

{e}
[o4]
w

Figure 3-4 Overplotting using different line styles.

In this example, an 11-by-4 array called allpts is defined which
contains all the scores for the four categories using the array con-
catenation operator. Once this array is defined, the PV=WAVE
array operators and functions can be applied to the entire data set,
rather than explicitly referencing the particular score.

Drawing X Versus Y Plots

67

Figure 3-4 was produced with the statements:

allpts = [[verbf], [verbm], [mathf], [mathm]]
Make an (n, 4) array containing the four score vectors.

PLOT, year, verbf, Yrange=[MIN(allpts), $
MAX(allpts)]
Plot 1st graph. Set the Y axis min and max from the min
and max of all data sets. Default line style is 0. The title
keywords have been omitted from this example for clarity.

FOR i=1, 3 do OPLOT, year, allpts(*, i), $
Line = i
Loop for the three remaining scores, varying the line style.

Plotting Date/Time Axes

Using PV=WAVE’s Date/Time functions, you can create Date/
Time variables and automatically plot multiple Date/Time axes.
For detailed information on manipulating and plotting Date/Time
data, see Chapter 7, Working with Date/Time Data.

Annotating Plots

An obvious problem with Figure 3-4 is that it lacks labels describ-
ing the different lines shown. To annotate a plot, select an
appropriate font and then use the XYOUTS procedure.

Selecting Fonts

You can use software or hardware generated fonts to annotate
plots. Chapter 9, Software Fonts explains the difference between
these types of fonts and the advantages and disadvantages of each.

The annotation in Figure 3-5 uses the PostScript Times-Roman
font. This was selected by first setting the default font, !P.Font, to
the hardware font index of 0, and then calling the DEVICE proce-
dure to set the Times-Roman font:

!P.Font = 0
SET_PLOT, ‘ps’
DEVICE, /Times

68 PV=-WAVE User’s Guide for Advantage and CL

Other PostScript fonts and their bold, italic, oblique and other vari-
ants are described in Using PostScript Fonts on page A-37.

Using XYOUTS to Annotate Plots

You can add labels an other annotation to your plots with the
XYOUTS procedure. The XYOUTS procedure is used to write
graphic text at a given location.

The basic call to XYOUTS to write a string starting at location
X, Y)is:

XYOUTS, x, y, 'string’

For a detailed description of XYOUTS and its keywords, see the
PV=WAVE Reference. For other tips on using XYOUTS, see Get-
ting Input from the Cursor on page 90.

Figure 3-5 illustrates one method of annotating each graph with its
name. The plot was produced exactly as was Figure 3-4, with the
exception that the X axis range was extended to the year 1990 to
allow room for the titles. To accomplish this, the keyword param-
eter XRange = [1967, 1990] was added to the call to PLOT.
A string vector, NAMES, containing the names of each score is also
defined. As noted in the previous section, the PostScript Times-
Roman font was selected for this example.

The annotation in Figure 3-5 was produced using the statements:

names = ['Female Verbal’, ’'Male Verbal’, §
'Female Math’, ’‘Male Math’]
Vector containing the name of each score.

nl = N_ELEMENTS(year) - 1
Index of last point.

FOR i=0,3 do XYOUTS, 1984, allpts(nl,i), $
names (i)
Append the title of each graph on the right.

Drawing X Versus Y Plots 69

‘SAT Scores

520 '
500 — Tl -
r e ‘\~_>,_ Male Math -
480+ -
9 F 4
S 460 -
(%) L 4
L Female Math]
440 —
i Male Verbal |
420 L Female Verbal _|
400 i P S S S S S S SRS SOy SR S SRR
1965 1970 1975 1980 1985 1990

Year

Figure 3-5 Example of annotating each line. The font used is the
hardware-generated PostScript Times-Roman font.

Plotting in Histogram Mode

You can produce a histogram-style plot by setting the Psym key-
word to 10 in the PLOT procedure call:

Psym = 10

This connects data points with vertical and horizontal lines, pro-
ducing the histogram.

Figure 3-6 illustrates this by comparing the distribution of
PV=WAVE'’s normally distributed random number function
(RANDOMN), to the theoretical normal distribution:

(zn)—l/Ze—xz/Z
This figure was produced by the following PV=WAVE statements:

X = FINDGEN(200) / 20. - 5.
200 values ranging from -5 to 5.

70

PV=WAVE User’s Guide for Advantage and CL

Y =1/ SQRT(2. * !PI) * EXP(-X"2 / 2) * §
(10. / 200)

Theoretical normal distribution, scale so integral is one.

H = HISTOGRAM(RANDOMN(Seed, 2000), $
BINSIZE = 0.4, min = -5., max = 5.)/2000.

PLOT,

Approximate normal distribution with RANDOM and then
form the histogram.

findgen(26) * 0.4 - 4.8, H, PSYM = 10

Plot the approximation using “histogram mode”.

OPLOT, X, Y*8.
Overplot the actual distribution.

0.20

0.15

LI S E L B B S

T

0.10—

0.05—

0.00

o l—L 1 L AL.‘..l.‘,_L SRS S U L B VRS E Ui AJ_A B RS W W -

Figure 3-6 Plotting in histogram mode.

Drawing X Versus Y Plots

71

Using Different Marker Symbols

Each data point may be marked with a symbol and/or connected
with lines. The value of the keyword parameter Psym selects the
marker symbol. Psym is described in detail in Graphics and Plot-
ting Keywords on page 497 of the PV=WAVE Reference, Volume 2.

For example, a value of 1 marks each data point with the plus sign,
2 is an asterisk, etc. Setting Psym to minus the symbol number
marks the points with a symbol and connects them with lines. For
example, a value of —1 marks points with a plus sign and connects
them with lines.

Note also that setting Psym to a value of 10 produces histogram-
style plots, as described in the previous section.

Frequently, when data points are plotted against the results of a
fit or model, symbols are used to mark the data points while the
model is plotted using a line. Figure 3-7 illustrates this, fitting the
male verbal scores to a quadratic function of the year. The
POLY_FIT function is used to calculate the quadratic. The state-
ments used to construct this plot are:

COEFF = POLY_FIT(YEAR, VERBM, 2, YFIT)
Use the POLY_FIT function to obtain a quadratic fit.

PLOT, YEAR, VERBM, /YNozero, Psym = 4, §
TITLE = ’'Quadratic Fit’, XTITLE = 'Year', §$
YTITLE = ’'SAT Score’

Plot the original data points with Psym = 4, for diamonds.

OPLOT, YEAR, YFIT
Overplot the smooth curve using a plain line.

72

PV=WAVE User's Guide for Advantage and CL

Quadratic Fit Quadrotic Fit
T T

480 480

460 - 4601

SAT Score
SAT Score

440 — a0

420 L L L 420 L L " J
1965 1970 1975 1980 1985 1965 1970 1975 1980 1985
Year Yeor

Figure 3-7 Plotting with predefined marker symbols (left) and user-
defined symbols (right).

Defining Your Own Marker Symbols

The USERSYM procedure allows you to define your own symbols
by supplying the coordinates of the lines used to draw the symbol.
The symbol you define may be drawn using lines, or it may be

filled using the polygon filling operator. USERSYM accepts two
vector parameters: a vector of X values and a vector of Y values.

The coordinate system you use to define the symbol’s shape is cen-
tered on each data point and each unit is approximately the size of
a character. For example, to define the simplest symbol, a 1-
character-wide dash, centered over the data point:

USERSYM, [-.5,.5],[0,0]

The color and line thickness used to draw the symbols are also
optional keyword parameters of USERSYM.

The right half of Figure 3-7 illustrates the use of USERSYM to
define a new symbol, a filled circle. It was produced in exactly the
same manner as the example in the previous section, with the
exception of the addition of the following statements that define
the marker symbol and use it:

A = FINDGEN(16) * (!PI * 2 / 16.)
Make a vector of 16 points, a; = 2xi / 16.

73

USERSYM, COS(A), SIN(A), /Fill
Define the symbol to be a unit circle, with 16 points, set the filled
flag.

PLOT, YEAR, VERBM, /YNozero, Psym = 8§,
As in the previous section, but use symbol index 8 to select user-
defined symbols.

Using Color and Pattern to Highlight Plots

Many scientific graphs use region filling to highlight the differ-
ence between two or more curves (i.e., to illustrate boundaries,
etc.). Given a list of vertices, the PV=WAVE procedure
POLYFILL fills the interior of an arbitrary polygon. The interior
of the polygon may be filled with a solid color or, with some
devices, a user-defined pattern contained in a rectangular array.

Figure 3-8 illustrates a simple example of polygon filling by filling
the region under the male math scores with a color index of 75%
the maximum, and then filling the region under the male verbal
scores with a 50% of maximum index. Because the male math
scores are always higher than the verbal, the graph appears as two
distinct regions.

74

PV=WAVE User’s Guide for Advantage and CL

Male SAT Scores
520(N w ’ T

500
480
460

440

v ooy b e by b]

LA R S T N A S ER N SN S BN BN N A BN BB

420

1965 980 1985

Figure 3-8 Filling regions using POLYFILL.

The program that produced Figure 3-8 is shown on the next page.
It first draws a plot axis with no data, using the Nodata keyword.
The minimum and maximum Y values are directly specified with
the YRange keyword. Because the Y axis range does not always
exactly include the specified interval (see Scaling the Plot Axes
and Adding Titles on page 63), the variable MINVAL, is set to the
current Y axis minimum, !Y.Crange(0). Next, the upper math
score region is shaded with a polygon which contains the vertices
of the math scores, preceded and followed by points on the X axis,
(YEAR(O), MINVAL), and (YEAR(n - 1), MINVAL).

The polygon for the verbal scores is drawn using the same method
with a different color. Finally, the XYOUTS procedure is used to
annotate the two regions.

IP.FONT = 0
Use hardware fonts.

DEVICE, /Helvetica
Set font to Helvetica.

75

Drawing Bar Charts

PLOT, year, mathm, YRANGE = [MIN(verbm), $
MAX(mathm)], /NODATA, TITLE = $
'Male SAT Scores'’
Draw axes, no data, set the range.

pxval = [year(0), year, year(nl)]
Make a vector of X values for the polygon, by duplicating the first
and last points.

minval = !y.crange(0)
Get Y value along bottom X axis.

POLYFILL, pxval, [minval, mathm, minval], $
COL = 0.75 * ID.N_COLORS

Make a polygon by extending the edges of the math score
down to the X axis.

POLYFILL, pxval, [minval, verbm, minvalj], $
COL = 0.50 * !D.N_COLORS

Same with verbal.

XYOUTS, 1968, 430, 'Verbal’, Size = 2
Label the polygons.

XYOUTS, 1968, 490, ’'Math’, Size = 2

Bar charts are used in business-style graphics and are useful in
comparing a small number of measurements within a few discrete
data sets. Although not designed specifically to create business
graphics, PV=WAVE can produce many seemingly complicated
business-style plots with a little effort.

The following example produces a bar-style chart showing the
four SAT scores as boxes of differing colors or shading. The pro-
gram used to draw Figure 3-9 is shown below and annotated. A
procedure called BOX is defined which draws a box given the
coordinates of two diagonal corners.

76

PV=WAVE User’s Guide for Advantage and CL

SATIScoresT

520 T

500

Male Math

480

aovoa o b e b b b

LIS L B L S A L L B B L L B L B B

460
440 Male Verbal
420 Female Verbal
400 . : ‘
1965 1970 1975 1985 1990

Figure 3-9 Bar chart drawn with POLYFILL.

As in the previous example, the PLOT procedure is used to draw
the axes and establish the scaling using the Nodata keyword.

PRO BOX, x0, y0, x1, yl, color

Draw a box, using polyfill, whose corners are (x0, y0), and
(x1.,y1).

POLYFILL, [x0,x0,x1,x1], [yO,yl,yl,y0], $
col = color
Call polyfill.

END

colors = 64 * INDGEN(4) + 32
Make a vector of colors for each score.

PLOT, year, mathm, yrange = [min(allpts), $
max(allpts)], title = 'SAT Scores’, $
/nodata, xrange = [year(0), 1990]

Use PLOT to draw the axes and set the scaling. Draw no
data points, explicitly set the X and Y ranges.

77

minval = !y.crange(0)
Get the Y value of the bottom X axis.

del = 1./5.
Width of bars in data units.

for iscore = 0,3 do begin
Loop for each score.

yannot = minval + 20 *(iscore+l)
Y value of annotation. Vertical separation is 20 data units.

xyouts, 1984, yannot, names(iscore)
Label for each bar.

BOX, 1984, yannot-6, 1988, yannot-2, $
colors(iscore)
Bar for annotation.

xoff = iscore * del - 2 * del
X offset of vertical bar for each score.

for iyr = 0, N_ELEMENTS(year)-1 do $
box, year(iyr)+xoff, minval, year(iyr)$
+ xoff+del, allpts(iyr, iscore), $
colors(iscore)
Draw vertical box for each year's score.

ENDFOR

Controlling Tick Marks

You have almost complete control over the number, style, place-
ment, and annotation of the tick marks. The following plotting
keywords are used to control tick marks:

78

PV=WAVE User’s Guide for Advantage and CL

Gridstyle XTicklen YTickformat ZMinor

Tickformat XTickname YTicklen ZTickformat
Ticklen XTicks YTickname ZTicklen
XGridstyle XTickv YTicks ZTickname
XMinor YGridstyle YTickv ZTicks
XTickformat YMinor ZGridstyle ZTickv

For detailed descriptions of these keywords, see Chapter 3 Graph-
ics and Plotting Keywords, in the PV=WAVE Reference.

Example 1: Specifying Tick Labels and Values

Figure 3-10 is a bar chart illustrating the direct specification of the
X axis tick values, number of ticks, and tick names. Building upon
the previous program, this program shows each of the four scores
for the year 1967, the first year in our data. It uses the BOX proce-
dure from the previous example to draw a rectangle for each score.
Using the data and variables from above, the program is:

xval = FINDGEN(4)/5. + .2
Tick X values, 0.2, 0.4, 0.6, 0.8.

yval = [verbf(0), verbm(0), mathf(0), $
mathm(0)]

Make a vector of scores from first year, corresponding to
the name vector from above.

PLOT, xval, yval, /YNOZERO, XRANGE = [0,1],$

XTICKV = xval, XTICKS = 3, §$

XTICKNAME = names, /NODATA, TITLE = $§

'SAT Scores, 1967’
Make the axes with no data. Force X range to [0,1], center-
ing xval, which also contains the tick values. Force three
tick intervals making four tick marks. Specify the tick
names from the names vector.

FOR i=0, 3 DO box, xval(i) - .08, §
!ly.crange(0), xval(i)+0.08, yval(i), $
128
Draw the boxes, centered over the tick marks. ly.crange(0)
is the Y value of the bottom X axis.

79

SAT Scores, 1967

520F 3
510 3
g 1
500 %
: E
490 — 3
é g
E
F B
470 j
460F ¥ ‘j

Female Verbal Male Verbal Female Math Male Math

Figure 3-10 Controlling X axis tick marks and their annotation.

Example 2: Specifying Tick Lengths

Figure 3-11 illustrates effects of changing the Ticklen keyword.
The left plot shows a full grid produced with tick mark lengths of
0.5. The right plot shows outward-extending tick marks produced
by setting the Ticklen keyword to —0.02. Outward extending ticks
are useful in that they do not obscure the data inside the window.
These two plots were produced with the following code:

precip = [vev vee oo]
Define 12 monthly precipitation values.

temp = [...]
Define 12 monthly average temperature.

month = [’'Ja’, 'Fe’, 'Ma’, 'Ap’', 'Ma’, §
IJuI’ IJul, IAuI, Isel’ 'OC', INOI’ $
IDeI]
Define names of months.

80

PV=WAVE User’s Guide for Advantage and CL

day = findgen(12) * 30 + 15
Vector containing approximate day number of the middle of each
month.

PLOT, day, precip, Xticks = 11, Xtickname = §
month, Ticklen = 0.5, Xtickv = day, §
Title = '‘Average Monthly Precipitation’, $
Xtitle = ’'Inches’, Subtitle = 'Denver’

Plot, setting tick mark length to full, setting number, posi-
tion and labels of ticks.

PLOT, day, precip, XTICKS = 11,XTICKNAME = §

month, TICKLEN = -0.02, XTICKV = day, §$
TITLE = 'Average Monthly Precipitation’, $
XTITLE = ’'Inches’, SUBTITLE = ’'Denver’

As above, setting tick mark length for outside ticks.

Use the Gridstyle, XGridstyle, YGridstyle, and ZGridstyle key-
words to change the linestyle of tick marks from solid to dashed,
dotted, or other styles. One use for this is to create a dotted or
dashed grid on the plot region. First set the Ticklen keyword to 0.5,
and then set the Gridstyle keyword to the value of the linestyle you
want to use. For more information on using the Gridstyle key-
words, see Chapter 3 Graphics and Plotting Keywords, in the
PV=WAVE Reference.

Average Monthly Precipitation Average Monthly Precipitation
25¢F] 25

20F : 201
15} 7 . 154
1.0F] 1.01
055 \ 0.51
0.0t 3 0.0

Ja Fe Ma Ap Ma Ju Ju Au Se Oc No D Ja Fe Ma Ap Ma Ju Ju Au Se Oc No De
Inches Inches
Denver Denver

Figure 3-11 Full grid produced with tick marks (right) and outward-
extending tick marks (left).

81

Example 3: Specifying Tick Label Formats

The XTickformat, YTickformat, and ZTickformat keywords let you
change the default format of tick labels. These keywords use the F
(floating-point), I (integer), and E (scientific notation) format
specifiers to specify the format of the tick labels. These format
specifiers are similar to the ones used in FORTRAN and are dis-
cussed in Appendix A, FORTRAN and C Format Strings, in the
PV=WAVE Programmer’s Guide.

For example:
PLOT, mydata, XTickformat='(F5.2)"

The resulting plot’s tick labels are formatted with a total width of
five characters and carried to two decimal places. As expected, the
width field expands automatically to accommodate larger values.
For example, the X axis tick labels for this plot might look like
this:

40.00400.004000.0040000.00

You can easily reformat the labels in scientific notation using the
E format specifier. For example:

PLOT_0OO, mydata, YTickformat='(E6.2)’
The resulting Y axis tick labels for this plot might look like this:

1.00e-081.00e-061.00e-041.00e-02

Like many of the keywords used with the plotting procedures, cor-
responding system variables allow you to change the normal
defaults. The corresponding system variables for the Tickformat
keywords are: !X.Tickformat, !'Y.Tickformat, and !Z.Tickformat.
The system variable !P.Tickformat lets you set the tick label for-
mat for all three axes.

Only the I (integer), F (floating-point), and E (scientific notation)
format specifiers can be used with the Tickformat keywords. Also,
you cannot place a quoted string inside a tick format. For example,
("<", F5.2, ">")isaninvalid Tickformat specification.

82

PV=-WAVE User’s Guide for Advantage and CL

Drawing Multiple Plots on a Page

Plots may be grouped on the display or page in the horizontal and/
or vertical directions using the !P.Multi system variable field.
PV=WAVE sets the plot window to produce the given number of
plots on each page and moves the window to a new sector at the
beginning of each plot. If the page is full, it is first erased. If more
than two rows or columns of plots are produced, PV=WAVE
decreases the character size by a factor of 2.

!P.Multi controls the output of multiple plots and is an integer vec-
tor in which:

* IP.Multi(0) — The number of empty sectors remaining on the
page. The display is erased if this field is 0 when a new plot is
begun.

e IP.Multi(1) — The number of plots across the page.

* !P.Multi(2) — The number of plots per page in the vertical
direction.

For example to set up PV=WAVE to stack two plots vertically on
each page:
1P.Multi = [0,1,2]

Note that the first element, !P.Multi(0), is set to zero to cause the
next plot to begin a new page. To make four plots per page, with
two columns and two rows:

!P.Multi = [0,2,2]

Figure 3-12 illustrates this format. To reset back to the default of
one plot per page:

tP.Multi = 0

83

2ﬁ;verage Monthly Precipitation Average Monthly Precipitation
. ‘ i | 3

R 4 25
20" 204 -
15 ; 151 »
1.0] 104 :
05 : 051 s

0.0t 0.0
Ja Fe Ma Ap Ma Ju Ju Au Se Oc No De Ja Fe Ma Ap Ma Ju Ju Au Se Oc No De
Inches Inches
Denver Denver
Month 100
- Ja Fe Ma Ap Ma Ju Ju Au Se Oc No De
K] 80 25 9 50}
5 70 20% / \
S 60 o &
g 159 1100 | 50 0 7 s 00
Py 50 10 g [
o N
5 40 5 g
& 30 0 1007
0 200 400
Day of Year
Denver Average Temperature Polar Plot

Figure 3-12 Multiple plots per page.

Plotting with Logarithmic Scaling

The XType, YType, and ZType keywords can be used with the
PLOT routine to get any combination of linear and logarithmic
axes. In addition, logarithmic scaling may be achieved by calling
PLOT_IO (linear X axis, log Y axis), PLOT_OI (log X, linear Y),
or PLOT_OO (log X, log Y). The OPLOT procedure uses the
same scaling and transformation as did the most recent plot.

Figure 3-13 illustrates using PLOT_IO to make a linear-log plot.
It was produced with the following statements:

X = FLTARR(256)
Create data array.

X(80:120) =1
Make a step function.

FREQ = FINDGEN(256)
Make a filter.

84

PV=WAVE User’s Guide for Advantage and CL

FREQ = FREQ < (256-FREQ)
.. symmetrical about x = 64.

FIL = 1. / (1+(FREQ / 20) "2)
2nd order Butterworth, cutoff freq = 20.

PLOT_IO, FREQ, ABS(FFT(X,1)), XTITLE = §
'Relative Frequency’, YTITLE = 'Power’, §$
xstyle =1

Plot with a logarithmic X axis. Use exact axis range.

OPLOT, FREQ, FIL
Show it.

100.00

o

Lo

10.00

T
rond

mﬂﬂﬂﬂﬂﬂﬂmﬂﬂmmﬂmmz
V’VVVIVVV\ I

o
o

Power

o

o
o T 1177

I L . , A I
50 100
Relative Frequency

0.01

Figure 3-13 Example of logarithmic scaling.

Specifying the Location of the Plot

The plot data window is the region of the page or screen enclosed
by the axes. The plot region is the box enclosing the plot data win-
dow and the titles and tick annotation. Figure 3-14 illustrates the
relationship of the plot data window, plot region, and the entire
device area (or window if using a windowing device).

85

_Title: Sample Plot
1.0
0.8 .
)
£ 06+ F
2
x
< 041 .
>
0.2 L
0.0 Plot Data Window (
0.0 0.2 0.4 0.6 0.8 1.0
X Axis Title
Subtitle
Plot Region

Total Device Area

Figure 3-14 Relationship of the plot data window, plot region, and the
device area.

These areas are determined by the following system variables and
keyword parameters, in order of decreasing precedence. Each of
these keywords and system variables are described in Chapter 3,
Graphics and Plotting Keywords and Chapter 4, System Variables,
in the PV=-WAVE Reference.

* Position keyword

* !P.Position system variable

* !P.Region system variable

* !P.Multi system variable

* XMargin, YMargin, and ZMargin keywords

* !X.Margin, !'Y.Margin, and !Z.Margin system variables

86

PV=WAVE User's Guide for Advantage and CL

Drawing Additional Axes on Plots

The AXIS procedure draws and annotates an axis. It optionally
saves the scaling established by the axis for use by subsequent
graphics procedures. It may be used to add additional axes to plots,
or to draw axes at a specified position.

The AXIS procedure accepts the set of plotting keyword parame-
ters that govern the scaling and appearance of the axes. In

addition, the keyword parameters XAxis, YAxis, and ZAxis specify
the orientation and position (if no position coordinates are

present), of the axis. The values of these parameters are: 0 for the
bottom or left axis, and 1 for the top or right. The tick marks and
their annotation extend away from the plot window. For example,
specify YAXIS = 1 todraw a Y axis on the right of the window.

The optional keyword parameter Save saves the data-scaling
parameters established for the axis in the appropriate axis system
variable, !X, 'Y, or !Z.

The call to AXIS is:
AXIS [[, x, y], 2]

where x, y, and optionally z specify the coordinates of the axis. By
including the appropriate keyword parameter (Device, Normal, or
Data) you can specify a coordinate system. The coordinate corre-
sponding to the axis direction is ignored when specifying an X
axis, the X coordinate parameter is ignored, but must be present if
there is a Y coordinate.

Drawing Additional Axes Example

Figure 3-15 illustrates using AXIS to draw axes with a different
scale, opposite the main X and Y axes.

87

Month
Ja Fe Ma Ap Ma Ju Ju Au Se Oc No De

E 80¢ -25%,
s 0 7N 1205
T 60¢ 1158
L / A 1 7}
$ 50¢ / \\ '108
o / \ 5 D
= 40¢ / 15 ©
()] 3 /

8 30i -~ . N g8

0 200 400
Day of Year

Denver Average Temperature

Figure 3-15 Plot containing axes with different scales, created with the
AXIS procedure.

The plot is produced using PLOT with the bottom and left axes
annotated and scaled in units of days and degrees Fahrenheit,
respectively. The XMargin and YMargin keyword parameters are
specified to allow additional room around the plot window for the
new axes. The keyword parameters XStyle = 8 and YStyle
= 8 inhibit drawing the top and right axes.

Next, the AXIS procedure is called to draw the top axis, (XAxis
= 1), labeled in months. Eleven tick intervals, with 12 tick marks
are drawn. Each monthly tick mark’s X value is the day of the year
of approximately the middle of the month. Tick mark names come
from the MONTH string array.

The right Y axis, YAxis = 1, is drawn in the same manner. The
new Y axis range is set by converting the original Y axis minimum
and maximum values, saved by PLOT in !'Y.Crange, from Fahren-
heit to Celsius, using the formula C = 5(F — 32) /9. The keyword
parameter YStyle = 1 forces the Y axis range to match the
given range exactly. The commands are:

PLOT, day, temp, /YNOZERO, SUBTITLE = $

88

PV=WAVE User’s Guide for Advantage and CL

'Denver Average Temperature’, $

XTITLE = ’'Day of Year’, YTITLE = $

'Degrees Fahrenheit’, XSTYLE = 8, $

YSTYLE = 8, XMARGIN = [8,8], YMARGIN = [4,4]
Plot the data, omit right and top axes.

AXIS, XAXIS = 1, XTICKS = 11, XTICKV = day, $
XTICKN = month, XTITLE = 'Month’, $
XCHARSIZE = 0.7

Draw the top X axis, supplying labels, etc. Make the char-
acters smaller so they will fit.

AXIS, YAXIS = 1, YRANGE = $
(!y.crange-32)*5. /9., YSTYLE =1, §
YTITLE = 'Degrees Celsius’

Draw right Y axis. Scale current Y axis minimum values
from Fahrenheit to Celsius, and make them the new min
and max values. Set YSTYLE to 1 to make the axis exact.

Drawing Polar Plots

The PLOT procedure converts its coordinates from cartesian to
polar coordinates when plotting if the Polar keyword parameter is
set. The first parameter to plot is the radius, R, and the second is 6,
expressed in radians. Polar plots are produced using the standard
axis and label styles — with box axes enclosing the plot area.

Figure 3-16 illustrates using AXIS to draw centered axes, dividing
the plot window into the four quadrants centered about the origin.
This method uses PLOT to plot the polar data and to establish the
coordinate scaling, but suppresses the axes. Next, two calls to

AXIS add the X and Y axes, drawn through data coordinate (0,0):

r = findgen(100)
Make a radius vector.

theta = r/5
And a theta vector.

PLOT, r, theta, SUBTITLE = ’'Polar Plot’, $
XSTY = 4, YSTY = 4, /POLAR
Plot the data, suppressing the axes by setting their styles
to 4.

89

AXIS, XAX =0, 0, O
AXIS, YAX = 0, 0, 0O
Draw the X and Y axes through (0,0).

100f

//,///gg \ \

[L l

100 | -50 ng,/// =7 100
\ \ /
=50+ /

-

r

-100¢

Polar Plot

Figure 3-16 A polar plot.

Getting Input from the Cursor

The CURSOR procedure reads the position of the graphics cursor
of the current graphics device. It enables the graphic cursor on the
device, optionally waits for the user to position it and press a
mouse button to terminate the operation (or type a character if the
device has no mouse), and then reports the cursor position.

The form of a call to CURSOR, where x and y are output variables
that hold the X and Y position of the cursor, and wait specifies
when CURSOR returns is:

CURSOR, x, y [, wait]

For detailed information on the CURSOR procedure, its parame-
ters and optional keywords, see the description in the PV=WAVE
Reference.

90

PV=-WAVE User’s Guide for Advantage and CL

The following code lets you draw lines between points marked
with the left or middle mouse button. Press the right mouse button
to exit the routine.

ERASE
Start with a blank screen.

CURSOR, X, Y, /Normal, /Down
Get the initial point in normalized coordinates.

WHILE (!ERR NE 4) DO BEGIN
Repeat until the right button is pressed.

CURSOR, X1, Y1, /Normal, /Down
Get the second point.

PLOTS, [X, X1], [Y, Y1], /Normal
Draw the line.

X =X1&Y=Y1
Make the current second point be the new first.

ENDWHILE

For another example, the following simple procedure can be used
to label plots using the cursor to position the text:

PRO ANNOTATE, TEXT
Text is the string to be written on the screen.

PRINT, ’‘Use the mouse to mark the’ + §
' text starting point:’
Ask the user to mark the position.

CURSOR, X, Y, /Normal, /Down
Get the cursor position after any button press.

XYOUTS, X, Y, TEXT, /Normal, /Noclip

Write the text at the specified position. The NOCLIP keyword is
used to ensure that the text will appear even if it is outside of the
plotting region.

END

Getting Input from the Cursor 91

To place the annotation on a device with an interactive pointer, call
this procedure with the command:

ANNOTATE, ’'Text for label’

Then move the mouse to the desired spot and press the left button.

92

PV=-WAVE User’s Guide for Advantage and CL

Displaying 3D Data

This chapter shows how to display graphic representations of
three-dimensional data. The two main procedures for doing this
are CONTOUR and SURFACE. Procedures for displaying data as
an image, another type of three-dimensional data representation,
are discussed in Chapter 5, Displaying Images. The 3D plotting
procedures include:

CONTOUR, z |, x, y]
Draws contour plots.

SURFACE, z |, x, y]
Draws 3D surface plots.

SHADE_SUREF, z [, x, y]
Draws shaded 3D surface plots.

CONTOUR and SURFACE both use line graphics to depict the
value of a two-dimensional array. As its name implies, CON-
TOUR draws contour plots. SURFACE depicts the surface created
by interpreting each array element as an elevation. SURFACE
projects this three-dimensional surface, after an arbitrary rotation
about the X and Z axis, into two dimensions. It then connects each
point with its neighbors using hidden line removal.

Almost all of the information concerning coordinate systems,
keyword parameters, and system variables that are discussed in

93

Chapter 3, Displaying 2D Data, also apply to CONTOUR and
SURFACE. The keywords and system variables discussed in this
chapter are described in detail in the PV=WAVE Reference.

Drawing Contour Plots

The CONTOUR procedure draws contour plots from data stored
in a rectangular array. In its simplest form, CONTOUR makes a
contour plot given a two-dimensional array of Z values. In more
complicated forms, CONTOUR accepts, in addition to Z values,
arrays containing the X and Y locations of each column, row, or
point, plus many keyword parameters. In more sophisticated
applications, the output of CONTOUR may be projected from
three dimensions to two dimensions, superimposed over an image,
or combined with the output of SURFACE.

The simplest call to CONTOUR is:

CONTOUR, z

This call labels the X and Y axes with the subscript along each
dimension. For example, when contouring a 10-by-20 array, the X
axis ranges from 0 to 9, and the Y from 0 to 19.

You can explicitly specify the X and Y locations of each cell with
the call:

CONTOUR, z, x, y

The x and y arrays may be either vectors or two-dimensional
arrays of the same size as z. If they are vectors, the element Z; ; has
a coordinate location of (Xj, 7). Otherwise, if the x and y arrays are
two-dimensional, the element Z; j has the location (X; 7 Y, j) Thus,
vectors should be used if the X location of Z; ; does not depend
upon j and the Y location of Z; ; does not depend upon i.

Dimensions must be compatible. In the one-dimensional case, x
must have a dimension equal to the number of columns in z, and y
must have a dimension equal to the number of rows in z. In the
two-dimensional case, all three arrays must have the same dimen-
sions.

94

PV=WAVE User’s Guide for Advantage and CL

PV=WAVE uses linear interpolation to determine the X and Y
locations of the contour lines that pass between grid elements. The
cells must be regular, in that the X and Y arrays must be monotonic
over rows and columns, respectively. The lines describing the
quadrilateral enclosing each cell and whose vertices are (X; ;, Y),
Kivij Yierj)» Kivpjui Yigijei) and (X; j4 1, Y 5, p) must intersect
only at the four corners.

Alternative Contouring Algorithms

In order to provide a wide range of options, CONTOUR uses
either the cell drawing or the follow method of drawing contours.

Cell Method

The cell drawing method is used by default. It examines each array
cell and draws all contours emanating from that cell before pro-
ceeding to the next cell. This method is efficient in terms of
computer resources but does not allow such options as contour
labeling or smoothing.

Follow Method

Note

The follow method searches for each contour line and then follows
the line until it reaches a boundary or closes. This method gives
better looking results with dashed linestyles, and allows contour
labeling and bicubic spline interpolation, but requires more com-
puter time. It can be used in with the POLYCONTOUR procedure
to shade closed contour regions with specified colors, as explained
in Filling Contours with Color on page 109. The follow method is
used if any of the following keywords is specified:
C_Annotation,C_Charsize, C_Labels, Follow, Path_Filename, or
Spline.

Because of their differing algorithms, these two methods will
often draw slightly different correct contour maps for the same
data. This is a direct result of the fact that there is often more than
one valid way to draw contours, and should not be a cause for con-
cern.

Drawing Contour Plots

95

Controlling Contour Features with Keywords

In addition to most of the ke<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>